Как настроить смартфоны и ПК. Информационный портал

Передача информации.

;
хранение информации;
передача информации;
обработка информации;
поиск информации;
информационные процессы в живой природе.

Основные информационные процессы

А теперь зададимся вопросом: что делает человек с полученной информацией? Во-первых, он ее стремится сохранить: запомнить или записать. Во-вторых, он передает ее другим людям. В-третьих, человек сам создает новые знания, новую информацию, выполняя обработку данной ему информации. Какой бы информационной деятельностью люди не занимались, вся она сводится к осуществлению трех процессов: хранению, передаче и обработке информации (рис. 1.3).

Хранение информации

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Лекция №4 Передача информации

Схема передачи информации. Канал передачи информации. Скорость передачи информации.

Существуют три вида информационных процессов: хранение, передача, обработка.

Хранение информации:

· Носители информации.

· Виды памяти.

· Хранилища информации.

· Основные свойства хранилищ информации.

С хранением информации связаны следующие понятия: носитель информации (память), внутренняя память, внешняя память, хранилище информации.

Носитель информации – это физическая среда, непосредственно хранящая информацию. Память человека можно назвать оперативной памятью. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Все прочие виды носителей информации можно назвать внешними (по отношению к человеку): дерево, папирус, бумага и т.д. Хранилище информации - это определенным образом организованная информация на внешних носителях, предназначенная для длительного хранения и постоянного использования (например, архивы документов, библиотеки, картотеки). Основной информационной единицей хранилища является определенный физический документ: анкета, книга и др. Под организацией хранилища понимается наличие определенной структуры, т.е. упорядоченность, классификация хранимых документов для удобства работы с ними. Основные свойства хранилища информации: объем хранимой информации, надежность хранения, время доступа (т.е. время поиска нужных сведений), наличие защиты информации.

Информацию, хранимую на устройствах компьютерной памяти, принято называть данными. Организованные хранилища данных на устройствах внешней памяти компьютера принято называть базами и банками данных.

Обработка информации:

· Общая схема процесса обработки информации.

· Постановка задачи обработки.

· Исполнитель обработки.

· Алгоритм обработки.

· Типовые задачи обработки информации.

Схема обработки информации:

Исходная информация – исполнитель обработки – итоговая информация.

В процессе обработки информации решается некоторая информационная задача, которая предварительно может быть поставлена в традиционной форме: дан некоторый набор исходных данных, требуется получить некоторые результаты. Сам процесс перехода от исходных данных к результату и есть процесс обработки. Объект или субъект, осуществляющий обработку, называют исполнителем обработки.

Для успешного выполнения обработки информации исполнителю (человеку или устройству) должен быть известен алгоритм обработки, т.е. последовательность действий, которую нужно выполнить, чтобы достичь нужного результата.

Различают два типа обработки информации. Первый тип обработки: обработка, связанная с получением новой информации, нового содержания знаний (решение математических задач, анализ ситуации и др.). Второй тип обработки: обработка, связанная с изменением формы, но не изменяющая содержания (например, перевод текста с одного языка на другой).

Важным видом обработки информации является кодирование – преобразование информации в символьную форму, удобную для ее хранения, передачи, обработки. Кодирование активно используется в технических средствах работы с информацией (телеграф, радио, компьютеры). Другой вид обработки информации – структурирование данных (внесение определенного порядка в хранилище информации, классификация, каталогизация данных).

Ещё один вид обработки информации – поиск в некотором хранилище информации нужных данных, удовлетворяющих определенным условиям поиска (запросу). Алгоритм поиска зависит от способа организации информации.

Передача информации:

· Источник и приемник информации.

· Информационные каналы.

· Роль органов чувств в процессе восприятия информации человеком.

· Структура технических систем связи.

· Что такое кодирование и декодирование.

· Понятие шума; приемы защиты от шума.

· Скорость передачи информации и пропускная способность канала.

Схема передачи информации:

Источник информации – информационный канал – приемник информации.

Информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи используются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума.

Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это приведёт к задержкам и подорожанию связи.

При обсуждении темы об измерении скорости передачи информации можно привлечь прием аналогии. Аналог – процесс перекачки воды по водопроводным трубам. Здесь каналом передачи воды являются трубы. Интенсивность (скорость) этого процесса характеризуется расходом воды, т.е. количеством литров, перекачиваемых за единицу времени. В процессе передачи информации каналами являются технические линии связи. По аналогии с водопроводом можно говорить об информационном потоке, передаваемом по каналам. Скорость передачи информации – это информационный объем сообщения, передаваемого в единицу времени. Поэтому единицы измерения скорости информационного потока: бит/с, байт/с и др. информационный процесс передача канал

Еще одно понятие – пропускная способность информационных каналов – тоже может быть объяснено с помощью «водопроводной» аналогии. Увеличить расход воды через трубы можно путем увеличения давления. Но этот путь не бесконечен. При слишком большом давлении трубу может разорвать. Поэтому предельный расход воды, который можно назвать пропускной способностью водопровода. Аналогичный предел скорости передачи данных имеют и технические линии информационной связи. Причины этому также носят физический характер.



1. Классификация и характеристики канала связи
Канал связи – это совокупность средств, предназначенных для передачи сигналов (сообщений).
Для анализа информационных процессов в канале связи можно использовать его обобщенную схему, приведенную на рис. 1.

ИИ
ЛС
П
ПИ
П

На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи;ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).
Существуют различные типы каналов, которые можно классифицировать по различным признакам:
1. По типу линий связи: проводные; кабельные; оптико-волоконные;
линии электропередачи; радиоканалы и т.д.
2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).
3. По помехозащищенности: каналы без помех; с помехами.
Каналы связи характеризуются:
1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов

V к = T к F к D к. (1)
Условие согласования сигнала с каналом:
V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .
2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.
3.
4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).
Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.
Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.
Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.
Проводные:
1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.
2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.
3. Оптико-волоконная. Скорость передачи 1 Гбит/с.
В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).
Радиолинии:
1. Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.
2. Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.
3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.
2. Пропускная способность дискретного канала связи
Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .
Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.
При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле
I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)
где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.
При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:
I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)
Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.
Пропускная способность дискретного канала связи
. (5)
Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .
Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .
2.1 Дискретный канал связи без помех
Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.
При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно
I (X, Y) = H(X) = H(Y); H (X/Y) = 0.
Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна
(6)
где V = 1/ – средняя скорость передачи одного символа.
Пропускная способность для дискретного канала связи без помех
(7)
Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:
. (8)
Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.
, где - сколь угодно малая величина,
то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.
Теорема не отвечает на вопрос, каким образом осуществлять кодирование.
Пример 1. Источник вырабатывает 3 сообщения с вероятностями:
p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.
Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.
Решение: Энтропия источника равна

[бит/с].
Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.
Средняя скорость передачи сигнала
V =1/2 t = 500 .
Скорость передачи информации
C = vH = 500×1,16 = 580 [бит/с].
2.2 Дискретный канал связи с помехами
Мы будем рассматривать дискретные каналы связи без памяти.
Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.
При наличии помехи среднее количество информации в принятом символе сообщении – Y , относительно переданного – X равно:
.
Для символа сообщения X T длительности T, состоящегоиз n элементарных символов среднее количество информации в принятом символе сообщении – Y T относительно переданного – X T равно:
I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n = 2320 бит/с
Пропускная способность непрерывного канала с помехами определяется по формуле

=2322 бит/с.
Докажем, что информационная емкость непрерывного канала без памяти с аддитивным гауссовым шумом при ограничении на пиковую мощность не больше информационной емкости такого же канала при той же величине ограничения на среднюю мощность.
Математическое ожидание для симметричного равномерного распределения

Средний квадрат для симметричного равномерного распределения

Дисперсия для симметричного равномерного распределения

При этом, для равномерно-распределенного процесса .
Дифференциальная энтропия сигнала с равномерным распределением
.
Разность дифференциальных энтропий нормального и равномерно распределенного процесса не зависит от величины дисперсии
= 0,3 бит/отсч.
Таким образом, пропускная способность и емкость канала связи для процесса с нормальным распределением выше, чем для равномерного.
Определим емкость (объем) канала связи
V k = T k C k = 10×60×2322 = 1,3932 Мбит.
Определим количество информации, которое может быть передано за 10 минут работы канала
10× 60× 2322=1,3932 Мбит.
Задачи

Вопрос 1. Понятие информации, виды и способы ее передачи.

Информация (от лат. informatio, разъяснение, изложение, осведомленность) - сведения о лицах, предметах, фактах, явлениях, событиях, реального мира не зависимо от их представления.

Информация - это отображение окружающего нас мира с помощью знаков и сигналов или иначе сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые воспринимают информационные системы (живые организмы, управляющие машины и др.) в процессе жизнедеятельности и работы.

Однако можно лишь утверждать, что понятие ИНФОРМАЦИЯ предполагает наличие материального носителя информации, источника информации, передатчика информации, приемника и канала связи между источником и приемником.

Классификация информации

Информацию можно разделить на виды по различным критериям:

по способу восприятия:

Визуальная - воспринимаемая органами зрения.

Аудиальная - воспринимаемая органами слуха.

Тактильная - воспринимаемая тактильными рецепторами.

Обонятельная - воспринимаемая обонятельными рецепторами.

Вкусовая - воспринимаемая вкусовыми рецепторами.

по форме представления:

Текстовая - передаваемая в виде символов, предназначенных обозначать лексемы языка.

Числовая - в виде цифр и знаков, обозначающих математические действия.

Графическая - в виде изображений, предметов, графиков.

Звуковая - устная или в виде записи и передачи лексем языка аудиальным путём.

по назначению:

Массовая - содержит тривиальные сведения и оперирует набором понятий, понятным большей части социума.

Специальная - содержит специфический набор понятий, при использовании происходит передача сведений, которые могут быть не понятны основной массе социума, но необходимы и понятны в рамках узкой социальной группы, где используется данная информация.

Секретная - передаваемая узкому кругу лиц и по закрытым (защищённым) каналам.

Личная (приватная) - набор сведений о какой-либо личности, определяющий социальное положение и типы социальных взаимодействий внутри популяции.

по значению:

Актуальная - информация, ценная в данный момент времени.

Достоверная - информация, полученная без искажений.

Понятная - информация, выраженная на языке, понятном тому, кому она предназначена.

Полная - информация, достаточная для принятия правильного решения или понимания.

Полезная - полезность информации определяется субъектом, получившим информацию в зависимости от объёма возможностей её использования.

по истинности:

истинная

Формы информации.

Существует множество способов передачи и обработки информации. Человек может передавать информацию, используя тот или иной язык, жесты, мимику, звуки и воспринимать информацию, используя любые органы чувств. Иными словами информация человеком передается, обрабатывается и принимается в форме знаков или сигналами. Сигнал может быть световым, звуковым (радиоволны), электромагнитным, биохимическим и т.д.

Процесс обработки информации предусматривает наличие носителя информации и средства передачи информации и обработки информации.

Информацию можно:

создавать;принимать;комбинировать;хранить;передавать;копировать;обрабатывать;искать;воспринимать;формализовать;делить на части;измерять;использовать;распространять;упрощать;разрушатзапоминать;преобразовывать;собирать;и т.д. Все эти процессы, связанные с определенными операциями над информацией, называются информационными процессами.

Информация может существовать в виде:

  • текстов, рисунков, чертежей, фотографий;
  • световых или звуковых сигналов;
  • радиоволн;
  • электрических и нервных импульсов;
  • магнитных записей;
  • жестов и мимики;
  • запахов и вкусовых ощущений;
  • хромосом, посредством которых передаются по наследству признаки и свойства организмов, и т. д.

Вопрос 2.Задачи получения, передачи, преобразования и хранения информации.

1. Передача информации

В процессе передачи информации обязательно участвуют источник и приемник информации: первый передает информацию, второй ее получает. Между ними действует канал передачи информации - канал связи.

Канал связи - совокупность технических устройств, обеспечивающих передачу сигнала от источника к получателю.

Кодирующее устройство - устройство, предназначенное для преобразования исходного сообщения источника к виду, удобному для передачи.

Декодирующее устройство - устройство для преобразования кодированного сообщения в исходное.

Компьютер - это самое популярное средство для обработки, хранения и передачи информации.

2. Преобразование информации

Фундаментальное свойство информации -- преобразуемость. Оно означает, что информация может менять способ и форму своего существования. Копируемость есть разновидность преобразования информации, при котором ее количество не меняется. В информатике отдельно рассматривают аналоговую информацию и цифровую. Это важно, поскольку человек благодаря своим органам чувств, привык иметь дело с аналоговой информацией, а вычислительная техника, наоборот, в основном работает с цифровой информацией. Мы не найдем двух одинаковых зеленых листьев на одном дереве и не услышим двух абсолютно одинаковых звуков -- это информация аналоговая. Если же разным цветам дать номера, а разным звукам -- ноты, то аналоговую информацию можно сделать цифровой.

Музыка, когда мы ее слышим, несет аналоговую информацию, но стоит только записать ее нотами, как она становится цифровой. Разница между аналоговой информацией и цифровой, прежде всего, в том, что аналоговая информация непрерывна, а цифровая - дискретна.

3. Использование информации

Информация используется при принятии решений. Достоверность, полнота, объективность полученной информации обеспечат вам возможность принять правильное решение.

4.Хранение информации.

Хранение информации - это способ распространения информации в пространстве и времени.
Способ хранения информации зависит от ее носителя (книга- библиотека, картина- музей, фотография- альбом).
ЭВМ предназначен для компактного хранения информации с возможностью быстрого доступа к ней.

Носитель информации – среда для записи и хранения информации:

1) Любой материальный предмет (бумага, глиняные, восковые и деревянные таблички, береста, папирус, кожа, камень, узелки на веревке, печатные книги, фотопленка, кинопленка)

2) Волны различной природы (световая волна)

3) Акустические носители

4) Электромагнитные носители

5) Гравитационные носители

6) Вещество в различном состоянии

7) Компьютерные носители (магнитные диски, оптические диски, винчестер, флэш-карта)

Примерами упорядоченного хранения информации является записная книжка, оглавление в книге, словари, расписание, каталоги.

ИТАК, передача, обработка и хранение информации происходит в форме :

5.Передача информации.
В процессе передачи информации обязательно участвуют источник и приемник информации: первый передает информацию, второй ее получает. Между ними действует канал передачи информации - канал связи.
Канал связи - совокупность технических устройств, обеспечивающих передачу сигнала от источника к получателю.
Кодирующее устройство - устройство, предназначенное для преобразования исходного сообщения источника к виду, удобному для передачи.
Декодирующее устройство - устройство для преобразования кодированного сообщения в исходное.
Деятельность людей всегда связана с передачей информации.
В процессе передачи информация может теряться и искажаться: искажение звука в телефоне, атмосферные помехи в радио, искажение или затемнение изображения в телевидении, ошибки при передачи в телеграфе. Эти помехи, или, как их называют специалисты, шумы, искажают информацию. К счастью, существует наука, разрабатывающая способы защиты информации -криптология.

Каналы передачи сообщений характеризуются пропускной способностью и помехозащищенностью.
Каналы передачи данных делятся на симплексные (с передачей информации только в одну сторону (телевидение)) и дуплексные (по которым возможно передавать информацию в оба направления (телефон, телеграф)). По каналу могут одновременно передаваться несколько сообщений. Каждое из этих сообщений выделяется (отделяется от других) с помощью специальных фильтров. Например, возможна фильтрация по частоте передаваемых сообщений, как это делается в радиоканалах.
Пропускная способность канала определяется максимальным количеством символов, передаваемых ему в отсутствии помех. Эта характеристика зависит от физических свойств канала.
Для повышения помехозащищенности канала используются специальные методы передачи сообщений, уменьшающие влияние шумов. Например, вводят лишние символы. Эти символы не несут действительного содержания, но используются для контроля правильности сообщения при получении.
С точки зрения теории информации все то, что делает литературный язык красочным, гибким, богатым оттенками, многоплановым, многозначным,- избыточность.

Состав операционной системы

Современные операционные системы имеют сложную структуру, каждый элемент которой выполняет определенные функции по управлению компьютером.

1. Управление файловой системой . Процесс работы компьютера сводится к обмену файлами между устройствами. В операционной системе имеются программные модули , управляющие файловой системой .

2. Командный процессор . Специальная программа, которая запрашивает у пользователя команды и выполняет их.

3. Драйверы устройств. Специальные программы, которые обеспечивают управление работой устройств и согласование информационного обмена с другими устройствами, а также позволяют производить настройку некоторых параметров устройств. Технология «Plug ad Play» (подключай и играй) позволяет автоматизировать подключение к компьютеру новых устройств и обеспечивает их конфигурирование.

4. Графический интерфейс. Используется для упрощения работы пользователя.

5. Сервисные программы или утилиты. Программы, позволяющие обслуживать диски (проверять, сжимать, дефрагментировать и т.д.), выполнять операции с файлами (архивировать и т.д.), работать в компьютерных сетях и т.д.

6. Справочная система. Позволяет оперативно получить информацию как о функционировании операционной системы в целом, так и о работе ее отдельных модулей.

Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы:

  1. Ядро – это модули, выполняющие основные функции ОС.
  2. Вспомогательные модули , выполняющие вспомогательные функции ОС. Одним из определяющих свойств ядра является работа в привилегированном режиме .

Структура компилятора

Процесс компиляции состоит из следующих этапов:

  1. Лексический анализ На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.
  2. Синтаксический анализ Последовательность лексем преобразуется в семантическое дерево.
  3. Оптимизация Выполняется удаление изличших конструкций и упрощение семантического дерева.
  4. Генерация кода. Семантическое дерево преобразуется в целевой язык.

Стадии работы компилятора

Работа компилятора состоит из нескольких стадий, которые могут выполняться последовательно, либо совмещаться по времени. Эти стадии могут быть представлены в виде схемы.


Первая стадия работы компилятора называется лексическим анализом , а программа, её реализующая, - лексическим анализатором (ЛА). На вход лексического анализатора подаётся последовательность символов входного языка. ЛА выделяет в этой последовательности простейшие конструкции языка, которые называют лексическими единицами. Примерами лексических единиц являются идентификаторы, числа, символы операций, служебные слова и т.д. ЛА преобразует исходный текст, заменяя лексические единицы их внутренним представлением - лексемами . Лексема может включать информацию о классе лексической единицы и её значении. Кроме того, для некоторых классов лексических единиц ЛА строит таблицы, например, таблицу идентификаторов, констант, которые используются на последующих стадиях компиляции.

Вторую стадию работы компилятора называют синтаксическим анализом , а соответствующую программу - синтаксическим анализатором (СА). На вход СА подается последовательность лексем, которая преобразуется в промежуточный код , представляющий собой последовательность символов действия или атомов. Каждый атом включает описание операции, которую нужно выполнить, с указанием используемых операндов. При этом последовательность расположения атомов, в отличие от лексем, соответствует порядку выполнения операций, необходимому для получения результата.

На третьей стадии работы компилятора осуществляется построение выходного текста. Программа, реализующая эту стадию, называется генератором выходного текста (Г). Генератор каждому символу действия, поступающему на его вход, ставит в соответствие одну или несколько команд выходного языка. В качестве выходного языка могут быть использованы команды устройства, команды ассемблера, либо операторы какого-либо другого языка.

Рассмотренная схема компилятора является упрощенной, поскольку реальные компиляторы, как правило, включают стадии оптимизации.

Вопрос 12. Требования к языкам программирования и их классификация.

Основные требования, предъявляемые к языкам программирования:

наглядность - использование в языке по возможности уже существующих символов, хорошо известных и понятных как программистам, так и пользователям ЭВМ;

единство - использование одних и тех же символов для обозначения одних и тех же или родственных понятий в разных частях алгоритма. Количество этих символов должно быть по возможности минимальным;

гибкость - возможность относительно удобного, несложного описания распространенных приемов математических вычислений с помощью имеющегося в языке ограниченного набора изобразительных средств;

модульность - возможность описания сложных алгоритмов в виде совокупности простых модулей, которые могут быть составлены отдельно и использованы в различных сложных алгоритмах;

однозначность - недвусмысленность записи любого алгоритма. Отсутствие ее могло бы привести к неправильным ответам при решении задач.

Машинно – ориентированные языки – это языки, наборы операторов и изобразительные средства которых существенно зависят от особенностей ЭВМ (внутреннего языка, структуры памяти и т.д.). Машинно –ориентированные языки позволяют использовать все возможности и особенности Машинно – зависимых языков:

Высокое качество создаваемых программ (компактность и скорость выполнения);

Возможность использования конкретных аппаратных ресурсов;

Предсказуемость объектного кода и заказов памяти;

Для составления эффективных программ необходимо знать систему команд и особенностифункционирования данной ЭВМ;

Трудоемкость процесса составления программ (особенно на машинных языках и ЯСК), плохо защищенного отпоявления ошибок;

Низкая скорость программирования;

Невозможность непосредственного использования программ, составленных на этих языках, на ЭВМдругих типов.

Машинно-ориентированные языки по степени автоматического программирования подразделяются на классы.

- Машинный язык

Отдельный компьютер имеет свой определенный Машинный язык (далее МЯ), ему предписывают выполнение указываемых операций над определяемыми ими операндами, поэтому МЯ является командным.

- Языки Символического Кодирования

Языки Символического Кодирования (далее ЯСК),так же, как и МЯ, являются командными. Однако коды операций и адреса в машинных командах, представляющие собой последовательность двоичных (во внутреннем коде) или восьмеричных (часто используемых при написании программ) цифр, в ЯСК заменены на символы (идентификаторы), форма написания которых помогает программисту легче запоминать смысловое содержание операции. Это обеспечивает существенное уменьшение числа ошибок при составлении программ. Использование символических адресов – первый шаг к созданию ЯСК.

- Автокоды

Есть также языки, включающие в себя все возможности ЯСК, посредством расширенного введения макрокоманд - они называются Автокоды.

Макрокоманды обеспечивают передачу фактических параметров, которые в процессе трансляции вставляются в«остов» программы, превращая её в реальную машинную программу.

Развитые автокоды получили название Ассемблеры. Сервисные программы и пр., как правило, составлены на языках типа Ассемблер.

- Макрос

Язык, являющийся средством для замены последовательности символов описывающих выполнение требуемых действий ЭВМ наиболее сжатую форму - называется Макрос (средство замены).

В основном, Макрос предназначен для того, чтобы сократить запись исходной программы. Компонент программного обеспечения, обеспечивающий функционирование макросов, называется макропроцессором. На макропроцессор поступает макроопределяющий и исходный текст. Реакция макропроцессора на вызов-выдачу выходного текста.

Макрос одинаково может работать, как с программами, так и с данными.

Машинно – независимые языки – это средство описания алгоритмов решения задач и информации, подлежащей обработке. Они удобны в использовании для широкого круга пользователей и не требуют от них знания особенностей организации функционирования ЭВМ и ВС.

Подобные языки получили название высокоуровневых языков программирования. Программы, составляемые на таких языках, представляют собой последовательности операторов, структурированные согласно правилам рассматривания языка(задачи, сегменты, блоки и т.д.). Операторы языка описывают действия, которые должна выполнять система после трансляции программы на МЯ.

-Проблемно – ориентированные языки

С расширением областей применения вычислительной техники возникла необходимость формализовать представление постановки и решение новых классов задач. Необходимо было создать такие языки программирования, которые, используя в данной области обозначения и терминологию, позволили бы описывать требуемые алгоритмы решения для поставленных задач, ими стали проблемно – ориентированные языки. Эти языки, языки ориентированные на решение определенных проблем, должны обеспечить программиста средствами, позволяющими коротко и четко формулировать задачу и получать результаты в требуемой форме.

Фортран, Алгол – языки, созданные для решения математических задач;

-Универсальные языки

Универсальные языки были созданы для широкого круга задач: коммерческих, научных, моделирования и т.д.

-Диалоговые языки

Появление новых технических возможностей поставило задачу перед системными программистами –создать программные средства, обеспечивающие оперативное взаимодействие человека с ЭВМ их назвали диалоговыми языками.

Задачи: управление и описание алгоритмов решения задач..

Одним из примеров диалоговых языков является Бэйсик.

Бэйсик использует обозначения подобные обычным математическим выражениям. Многие операторы являются упрощенными вариантами операторов языка Фортран. Поэтому этот язык позволяет решать достаточно широкий круг задач.

-Непроцедурные языки

Непроцедурные языки составляют группу языков, описывающих организацию данных, обрабатываемых по фиксированным алгоритмам(табличные языки и генераторы отчетов), и языков связи с операционными системами.

Программы, составленные на табличном языке, удобно описывают сложные ситуации, возникающие при системном анализе.

Рекурсивные структуры

1.4.1. Список

Список относится к особой группе структур - это так на­зы­ва­е­мые ре­курсивные структуры.

Приведем рекурсивное определение списка: Списком называется со­­во­купность

связанных элементов, из которых один является осо­бым элементом (первым,"головой"), а все остальные образуют спи­сок. Рекурсивные структуры в программировании замечательны тем, что мно­гие операции по их обработке можно эффективно реализовать с использованием рекурсивных процедур, которые отличаются боль­шой ла­коничностью и наглядностью.

1.4.2. Набор

Другим примером рекурсивной структуры является структура на­бора, которая

определяется следующим образом: Набором называется совокупность связанных

элементов, каждый из которых может быть ли­бо атомом, либо набором. Атом

определяет "неделимый" элемент на­бора, предназначенный для хранения

элементарной порции ин­фор­ма­ции. Реализация наборов основана на

использовании разнородных списков.

1.4.3. Дерево

Еще один пример рекурсивной структуры, широко использующейся в

программировании - структура дерева. Деревом называется сово­купность

связанных элементов - вершин дерева, включающая в себя один особый элемент -

корень, при этом все остальные эле­мен­ты образуют поддеревья. Наиболее

широко используется струк­ту­ра бинарного дерева, все множество вершин

которого делится (по отношению к корню) на два подмножества - два поддерева

(левое и правое).

Примеры рекурсивных алгоритмов

6.1. Рисование дерева

6.2. Ханойские башни

6.3. Синтаксический анализ арифметических выражений

6.4. Быстрые сортировки

6.5. Произвольное количество вложенных циклов

6.6. Задачи на графах

6.7. Фракталы

Присваивание

В одной строке может стоять больше одной операции присваивания =.

Знак = всегда означает: "переменной слева присвоить значение, стоящее справа ". Операция выполняется справа налево. Поэтому первой значение 100 получает переменная d, затем с, b и а.

Знак присвоить может стоять даже внутри математического выражения:

Присваивание имеет более высокий приоритет, чем сложение и вычитание. Поэтому сначала переменной r будет присвоено значение 9-с. А затем переменная value получит значение 5+9-с.

Составное присваивание

При написании программы часто требуется изменить значение переменной. Например, требуется взять текущее значение переменной, прибавить или умножить это значение на какое-то выражение, а затем присвоить это значение той же переменной. Такие операции выполняют операторы составного присваивания.

Преобразование типов

(тип данных) выражение

v=(double)age*f;

Переменная age временно преобразуется к типу с плавающей точкой двойной точности и умножается на переменную f.

Операции отношения

Операции инкремента (++) и декремента (-)

В языке C++ предусмотрены две уникальные операции, которые увеличивают или уменьшают значение переменной на 1.

Префиксный и постфиксные операции различаются приоритетом. Префиксные операции имеют самый большой приоритет и выполняются до любой другой операции. Постфиксные операции имею самый маленький приоритет и выполняются после всех остальных операции.

Операция sizeof

Имеет формат

sizeof данные

sizeof (тип данных)

Операция sizeof возвращает размер в байтах указанного в ней данного или типа данных.

cout " "Размер типа float в байтах=\t" "sizeof (float)

Результат: 4.

Операция "запятая"

Дополнительная операция (,) не работает непосредственно с данными, а приводит к вычислению выражения слева направо. Эта операция позволяет Вам использовать в одной строке несколько выражений, разделенных запятой.

Оператор?:

(Условие) ? (выражение1):(выражение2)

Если условие истинно, то выполняется выражение1, а если ложно, то выражение2.

(а>b) ? (ans =10):(ans=25);

ans=(a>b)?(10):(25);

Если а>b, то переменная ans получается значение 10, иначе - значение 0.25

Поразрядные операции

|,или

^ исключающее или

Логические бинарные операции (&&-конъюнкция(И) и || дизъюнкция (или))

Унарные операции:

& - операция получения адреса операнда

* - операция обращения по адресу, т.е. раскрытия ссылки, иначе операция разыменования (доступа по адресу к значению того объекта, на который указывает операнд (адрес)).

Унарный минус- изменяет знак арифметического операнда.

Унарный плюс (введен для симметрии с унарным минусом)

! – логическое отрицание значения операнда.

Увеличение на единицу (инкремент или автоувеличение):

префиксная операция – увеличение значения операнда на 1 до его использования

постфиксная операция – увеличение значения операнда на 1 после его использования.

Операнд не может быть константой.

sizeof – операция вычисления размера(в байтах) для объекта того типа, который имеет операнд.

Бинарные операции:

Аддитивные (+- сложение арифметических операндов, - вычитание арифметических операндов)

Мультипликативные (* - умножение операндов арифметического типа, / - деление операндов арифметического типа, %- получение остатка от деления целочисленных операндов (деление по модулю))

Операции сдвига (<<- сдвиг влево битового представления значения левого целочисленного операнда на количество разрядов, равное значению правого целочисленного операнда, >>- сдвиг вправо битового представления значения левого целочисленного операнда на количество разрядов, равное значению правого целочисленного операнда)

Операции отношения (сравнения) (> < <= >= != = =-равно)

Логические бинарные операции (&&-конъюнкция(И) и || дизъюнкция (или))

Операции присваивания (=- присвоить значение выражения-операнда из правой части операнду левой части p=10.3 – 2*x, *= присвоить левой части произведение значений обоих операндов P*=2 эквивалентно P = P*2, /= P/=2.2-d эквивалентно P=P/ (2.2-d), %= N%3 эквивалентно N=N % 3;,+= присвоить операнду левой части сумму значений обоих операндов А+= В эквивалентно А=А+В, -= Х -=4.5 – z эквивалентно Х=Х – (4.2 – z),

Запятая в качестве операции (несколько выражений, разделенных запятыми, вычисляются последовательно слева направо. В качестве результата сохраняются тип и результат самого правого значения).

Приоритеты операций задают последовательность вычислений в сложном выражении

Вопрос 26. Потоковый ввод и вывод информации в языке С++

Дело в том, что никакая полезная программа не может быть написана на языке С++ без привлечения библиотек, включаемых в конкретную среду (в компилятор) языка. Самая незаменимая из этих библиотек - библиотека ввода-вывода.

Потоки ввода-вывода

В соответствии с названием заголовочного файла iostream.h (stream - поток; "i" - сокращение от input - ввод; "o" - сокращение от output - вывод) описанные в этом файле средства ввода-вывода обеспечивают программиста механизмами для извлечения данных из потоков и для включения (внесения) данных в потоки. Поток определяется как последовательность байтов (символов) и с точки зрения программы не зависит от тех конкретных устройств (файл на диске, принтер, клавиатура, дисплей, стример и т.п.), с которыми ведется обмен данными. При обмене с потоком часто используется вспомогательный участок основной памяти - буфер потока.

В буфер потока помещаются выводимые программой данные перед тем, как они будут переданы к внешнему устройству. При вводе данных они вначале помещаются в буфер и только затем передаются в область памяти выполняемой программы. Использование буфера как промежуточной ступени при обменах с внешними устройствами повышает скорость передачи данных, так как реальные пересылки осуществляются только тогда, когда буфер уже заполнен (при выводе) или пуст (при вводе).

Работу, связанную с заполнением и очисткой буферов ввода-вывода, операционная система очень часто берет на себя и выполняет без явного участия программиста. Поэтому поток в прикладной программе обычно можно рассматривать просто как последовательность байтов. При этом очень важно, что никакой связи значений этих байтов с кодами какого-либо алфавита не предусматривается. Задача программиста при вводе-выводе с помощью потоков - установить соответствие между участвующими в обмене типизированными объектами и последовательностью байтов потока, в которой отсутствуют всякие сведения о типах представляемой (передаваемой) информации.

Используемые в программах потоки логически делятся на три типа:

Входные, из которых читается информация;

Выходные, в которые вводятся данные;

Двунаправленные, допускающие как чтение, так и запись.

Все потоки библиотеки ввода-вывода последовательные, т.е. в каждый момент для потока определены позиции записи и (или) чтения, и эти позиции после обмена перемещаются по потоку на длину переданной порции данных.

В соответствии с особенностями "устройства", к которому "присоединен" поток, потоки принято делить на

Стандартные,

Консольные,

Строковые и

Файловые.

В заключение перечислим отличительные особенности применения механизма потоков. Потоки обеспечивают:

Буферизацию при обменах с внешними устройствами;

Независимость программы от файловой системы конкретной операционной системы;

Контроль типов передаваемых данных;

Возможность удобного обмена для типов, определенных пользователем.

Под вводом-выводом в программировании понимается процесс обмена информацией между оперативной памятью и внешними устройствами: клавиатурой, дисплеем, магнитными накопителями и т. п. Ввод - это занесение информации с внешних устройств в оперативную память, а вывод - вынос информации из оперативной памяти на внешние устройства. Такие устройства, как дисплей и принтер, предназначены только для вывода; клавиатура - устройство ввода. Магнитные накопители (диски, ленты) используются как для ввода, так и для вывода.

Основным понятием, связанным с информацией на внешних устройствах ЭВМ, является понятие файла. Всякая операция ввода-вывода трактуется как операция обмена с файлами: ввод - это чтение из файла в оперативную память; вывод - запись информации из оперативной памяти в файл. Поэтому вопрос об организации в языке программирования ввода-вывода сводится к вопросу об организации работы с файлами.

Вспомним, что в Паскале мы использовали представления о внутреннем и внешнем файле. Внутренний файл - это переменная файлового типа, являющаяся структурированной величиной. Элементы файловой переменной могут иметь разный тип и, соответственно, разную длину и форму внутреннего представления. Внутренний файл связывается с внешним (физическим) файлом с помощью стандартной процедуры Assign. Один элемент файловой переменной становится отдельной записью во внешнем файле и может быть прочитан или записан с помощью одной команды. Попытка записать в файл или прочитать из него величину, не совпадающую по типу с типом элементов файла, приводит к ошибке.

Аналогом понятия внутреннего файла в языках Си/Си++ является понятие потока. Отличие от файловой переменной Паскаля состоит в том, что потоку в Си не ставится в соответствие тип. Поток - это байтовая последовательность, передаваемая в процессе ввода-вывода.

Поток должен быть связан с каким-либо внешним устройством или файлом на диске. В терминологии Си это звучит так: поток должен быть направлен на какое-то устройство или файл.

Основные отличия файлов в Си состоят в следующем: здесь отсутствует понятие типа файла и, следовательно, фиксированной структуры записи файла. Любой файл рассматривается как байтовая последовательность:

Стрелочкой обозначен указатель файла, определяющий текущий байт файла. EOF является стандартной константой - признаком конца файла.

Стандартные потоки (istream, ostream, iostream ) служат для работы с терминалом. Строковые потоки (istrstream, ostrstream, strstream ) служат для ввода-вывода из строковых буферов, размещенных в памяти. Файловые потоки (ifstream, ofstream, fstream ) служат для работы с файлами.

· ios базовый потоковый класс

· streambuf буферизация потоков

· istream потоки ввода

· ostream потоки вывода

· iostream двунаправленные потоки

· iostream_withassign поток с переопределенной операцией присваивания

· istrstream строковые потоки ввода

· ostrstream строковые потоки вывода

· strstream двунаправленные строковые потоки

· ifstream файловые потоки ввода

· ofstream файловые потоки вывода

· fstream двунаправленные файловые потоки

· Потоки для работы с файлами создаются как объекты следующих классов:

· ofstream - запись в файл;

· ifstream - чтение из файла;

· fstream - чтение/запись.

· Ввод/вывод в C++ осуществляется с помощью потоков библиотеки C++, доступных при подключении заголовочного файла iostream.h (в VC++.NET – объекта-заголовка iostream). Поток представляет собой объект какого-либо потокового класса.

· Потоковые классы сконструированы на основе базового класса ios:

· ios – базовый потоковый класс;

· istream – класс входных потоков;

Каждый человек постоянно сталкивается с информацией, притом так часто, что смысл самого понятия объяснить может не каждый. Информация - это сведения, которые передаются от одного лица другому при помощи различных средств связи.

Существуют различные способы передачи данных, о которых речь пойдет далее.

Каким образом передается информация

В процессе развития человечества происходит постоянное совершенствование механизмов, при помощи которых передаются сведения. Способы хранения и передачи информации довольно разнообразны, поскольку существует несколько систем, в которых происходит обмен данных.

В системе передачи данных различают 3 направления: это передача от человека к человеку, от человека к компьютеру и от компьютера к компьютеру.

  • Первоначально сведения получают при помощи органов чувств - зрения, слуха, обоняния, вкуса и осязания. Для передачи информации на ближнем расстоянии существует язык, который позволяет сообщить полученные сведения другому человеку. Кроме того, передать что-либо другому человеку можно, написав письмо либо в процессе спектакля, а также при разговоре по телефону. Несмотря на то, что в последнем примере используется средство связи, то есть промежуточное устройство, оно позволяет передать сведения в непосредственном контакте.
  • Для передачи данных от человека к компьютеру необходимо введение ее в память устройства. Информация может иметь разный вид, о чем будет идти разговор далее.
  • Передача от компьютера к компьютеру происходит посредством промежуточных устройств (флеш-карты, интернета, диска и т. д.).

Обработка информации

После получения необходимых сведений возникает необходимость их хранения и передачи. Способы передачи и обработки информации наглядно представляют этапы развития человечества.

  • В начале своего развития обработка данных представляла собой перенесение их на бумагу при помощи чернил, пера, ручки т. д. Однако недостаток такого способа обработки заключался в ненадежности хранения. Если упоминать способы хранения и передачи информации, хранение на бумаге имеет определенный срок, который определяется сроком службы бумаги, а также условиями ее эксплуатации.
  • Следующим этапом является механическая информационная технология, при которой используется печатная машинка, телефон, диктофон.
  • Далее на смену механической системе обработки сведений пришла электрическая, ведь способы передачи информации постоянно совершенствуются. К таким средствам относят электрические пишущие машинки, портативные диктофоны, копировальные машинки.

Виды информации

Виды и способы передачи информации отличаются в зависимости от ее содержания. Это могут быть текстовые сведения, представляемые в устной и письменной форме, а также символьные, музыкальные и графические. К современным видам данных относят также видеоинформацию.

С каждой из этих форм хранения информации человек имеет дело каждый день.

Средства передачи информации

Средства передачи информации могут быть устными и письменными.

  • К устным средствам относят выступления, собрания, презентации, доклады. При использовании этого метода можно рассчитывать на быструю реакцию оппонента. Использование дополнительных невербальных средств в процессе разговора способно усилить эффект от речи. К таким средствам относят мимику, жесты. Однако в то же время информация, получаемая в устном виде, не имеет долгосрочного действия.
  • Письменные средства информации - это статьи, отчеты, письма, записки, распечатки и т. д. При этом не приходится рассчитывать на быструю реакцию публики. Однако преимуществом является то, что полученную информацию можно перечитать, усвоив тем самым информацию.

Способы представления информации

Как известно, информация может быть представлена в нескольких формах, что, однако, не меняет ее содержания. Например, дом можно представить как слово или графическое отображение.

Способы представления и передачи информации можно изобразить в виде следующего списка:

  • Текстовая информация. Позволяет наиболее полно предоставить информацию, однако может содержать большой объем данных, что способствует плохому ее усвоению.
  • Графическое изображение - это график, схема, диаграмма, гистограмма, кластер и т. д. Они позволяют кратко представить информацию, установить логические связи, причинно-следственные отношения. Кроме того, информация в графическом виде позволяет найти решения различных вопросов.
  • Презентация является красочным наглядным примером способа представления информации. В ней могут сочетаться как текстовые данные, так и графическое их отображение, то есть различные виды представления информации.

Понятие о коммуникации

Коммуникацией называют систему взаимодействия между несколькими объектами. В обобщенном смысле это и есть передача информации от одного объекта другому. Коммуникации являются залогом успешной деятельности организации.

Способы передачи информации (коммуникации) выполняют следующие функции: организационную, интерактивную, экспрессивную, побудительную, перцептивную.

Организационная функция обеспечивает между сотрудниками систему отношений; интерактивная позволяет формировать настроение окружающих; экспрессивная окрашивает настроение окружающих; побудительная призывает к действию; перцептивная позволяет различным собеседникам понимать друг друга.

Современные способы передачи информации

К наиболее современным способам передачи информации относят следующие.

В интернете содержится огромное количество информации. Это позволяет черпать для себя массу знаний, не утруждаясь изучением книг и других бумажных источников. Однако, помимо этого, он содержит способы и средства передачи информации, аналогичные исторически более давним моделям. Это аналог традиционной почты - электронная почта, или e-mail. Удобство использования этого вида почты заключается в скорости передачи письма, исключении этапности доставки. На сегодняшний день практически каждый имеет электронный адрес, и связь со многими организациями поддерживается именно посредством этого способа передачи информации.

GSM-стандарт цифровой сотовой связи, который широко применяется повсеместно. При этом происходит кодирование устной речи и передача ее через преобразователь другому абоненту. Вся необходимая информация размещается в sim-карте, которая вставляется в мобильное устройство. На сегодняшний день наличие данного средства связи является необходимостью в качестве средства коммуникации.

WAP позволяет просматривать на экране мобильного телефона web-страницы с информацией в любом ее виде: текстовом, числовом, символьном, графическом. Изображение на экране может быть адаптировано под экран мобильного телефона либо иметь вид, аналогичный компьютерному изображению.

Способы передачи информации современного типа включают также GPRS, который позволяет осуществлять пакетную передачу данных на мобильное устройство. Благодаря этому средству связи возможно беспрерывное использование пакетными данными одновременно большим количеством человек одновременно. Среди свойств GPRS можно назвать высокую скорость передачи данных, оплату только за переданную информацию, большие возможности использования, параметры совместимости с другими сетями.

Интернет посредством использования модема позволяет получить высокую скорость передачи информации при низкой стоимости такого доступа. Большое количество интернет-провайдеров создает высокий уровень конкуренции между ними.

Спутниковая связь позволяет получить доступ в интернет посредством спутника. Преимуществом такого способа является низкая стоимость, высокая скорость передачи данных, однако среди недостатков есть ощутимый - это зависимость сигнала от погодных условий.

Возможности использования средств передачи информации

По мере появления новых средств передачи информации возникают возможности нетрадиционного использования различных устройств. Например, возможность видеоконференции и видеозвонка вызвала идею использовать оптические устройства в медицине. Таким образом происходит получение информации о патологическом органе при непосредственном наблюдении во время операции. При использовании такого способа получения информации нет необходимости делать большой разрез, проведение операции возможно при минимальном повреждении кожи.

Общая характеристика процесса сбора, передачи, обработки и накопления информации.

1. Сбор и регистрация информации - это деятельность субъекта, в ходе которой он получает сведения об интересующем его объекте. Сбор информации может производиться или человеком, или с помощью технических средств и систем - аппаратно. Например, пользователь может получить информацию о движении поездов или самолетов сам, изучив расписание, или же от другого человека непосредственно, либо через какие-то документы, составленные этим человеком, или с помощью технических средств (автоматической справки, телефона и т. д.). Задача сбора информации не может быть решена в отрыве от других задач, - в частности, задачи обмена информацией (передачи).

Сбор и регистрация информации организуется различными способами:

§ Механизированный (например: ввод данных с клавиатуры);

§ Автоматизированный (ввод информации с использованием специальных устройств (например: с помощью сканера можно осуществить ввод любой текстовой и графической информации и даже рукописного текста; с помощью звуковой карты компьютер записывает звуки музыки и голоса);

§ Автоматический способ организации сбора и регистрации информации предусматривает сбор данных непосредственно с датчиков и передачу их в ЭВМ без участия человека.

Передача, информации необходима для того или иного ее распространения. Общая схема передачи такова: источник информации - канал связи - приемник (получатель) информации

Передача информации может производиться как до обработки, так и после неё, т.к. исходные данные обрабатываются обычно не в местах их возникновения, а результаты обработки используются различными органами управления, которые находятся по месту обработки информации.

Передача осуществляется с помощью транспортных средств и по каналам связи.

Основными устройствами для быстрой передачи информации на большие расстояния в настоящее время являются телеграф, радио, телефон, телевизионный передатчик, телекоммуникационные сети на базе вычислительных систем.

Для передачи информации с помощью технических средств используются кодирующее устройство, предназначенное для преобразования исходного сообщения источника информации к виду, удобному для передачи, и декодирующее устройство, необходимое для преобразования кодированного сообщения в исходное.

При передаче информации необходимо учитывать тот факт, что информация при этом может теряться или искажаться, т.е. присутствуют помехи. Для нейтрализации помех при передаче информации зачастую используют помехоустойчивый избыточный код, который позволяет восстановить исходную информацию даже в случае некоторого искажения.


Передача информации между компьютерами осуществляется с помощью локальных и глобальных сетей. Передача через локальную сеть позволяет организовать совместную работу отдельных компьютеров, решать одну задачу с помощью нескольких компьютеров, совместно использовать ресурсы и решать множество других проблем. Глобальная сеть предоставляет огромные возможности передачи информации: электронная почта, телеконференции, информационная служба WWW, чаты и т.д..

3. Арифметическая и логическая обработка информации .

Обработка информации - это упорядоченный процесс ее преобразования в соответствии с алгоритмом решения задачи. Арифметическая и логическая обработка информации может выполняться человеком в «рукопашную» с использованием различных технических устройств, например, калькулятора или с помощью компьютера с использованием различных программ, учитывающих особенности решаемых задач.

По стадии обработки информация может быть :

Первичная информация - это информация, которая возникает непосредственно в процессе деятельности объекта и регистрируется на начальной стадии.

Вторичная информация - это информация, которая получается в результате обработки первичной информации и может быть промежуточной и результатной.

Промежуточная информация используется в качестве исходных данных для последующих расчетов.

Результатная информация получается в процессе обработки первичной и промежуточной информации и используется для выработки управленческих решений.

4. Хранение информации - это процесс поддержания исходной информации в виде, обеспечивающем выдачу данных по запросам конечных пользователей в установленные сроки. Хранение информации организуется как в памяти компьютера, так и на технических носителях (различных дисках), на бумажных носителях.

5. Преобразование информации в вид, удобный для её анализа.

После решения задачи обработки информации результат должен быть выдан конечным пользователям в требуемом виде, Эта операция реализуется в ходе решения задачи выдачи информации. Выдача информации, как правило, производится с помощью внешних устройств ЭВМ в виде текстов, таблиц, графиков и пр.

Лучшие статьи по теме