Как настроить смартфоны и ПК. Информационный портал

Передача информации. Основы информатики

Схематично процесс передачи информации показан на рисунке. При этом предполагается, что имеется источник и получатель информации. Сообщение от источника к получателю передается посредством канала связи (информационного канала).

Рис. 3. – Процесс передачи информации

В таком процессе информация представляется и передается в форме некоторой последовательности сигналов, символов, знаков. Например, при непосредственном разговоре между людьми происходит передача звуковых сигналов - речи, при чтении текста человек воспринимает буквы – графические символы. Передаваемая последовательность называется сообщением. От источника к приемнику сообщение передается через некоторую материальную среду (звук - акустические волны в атмосфере, изображение – световые электромагнитные волны). Если в процессе передачи используются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, телевидение.

Можно говорить о том, что органы чувств человека выполняют роль биологических информационных каналов. С их помощью информационное воздействие на человека доносится до памяти.

Клодом Шенноном , была предложена схема процесса передачи информации по техническим каналам связи, представленная на рисунке.

Рис. 4. – Процесс передачи информации по Шеннону

Работу такой схемы можно пояснить на процессе разговора по телефону. Источником информации является говорящий человек. Кодирующим устройством – микрофон телефонной трубки, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Каналом связи является телефонная сеть (провода, коммутаторы телефонных узлов через которые проходит сигнал)). Декодирующим устройством является телефонная трубка (наушник) слушающего человека – приемник информации. Здесь пришедший электрический сигнал превращается в звук.

Связь, при которой передача производится в форме непрерывного электрического сигнала, называется аналоговой связью.

Под кодированием понимается любое преобразование информации, идущей от источника, в форму, пригодную для ее передачи по каналу связи.

В настоящее время широко используется цифровая связь, когда передаваемая информация кодируется в двоичную форму (0 и 1 - двоичные цифры), а затем декодируется в текст, изображение, звук. Цифровая связь является дискретной.

Термином "шум" называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. В таких случаях необходима защита от шума.

В первую очередь применяются технические способы защиты каналов связи от воздействия шумов. Например, использование экранного кабеля вместо "голого" провода; применение разного рода фильтров, отделяющих полезный сигнал от шума и пр.

Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важным идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована.

Однако, нельзя делать избыточность слишком большой. Это приведет к задержкам и подорожанию связи. Теория кодирования К. Шеннона как раз и позволяет получить такой код, который будет оптимальным. При этом избыточность передаваемой информации будет минимально-возможной, а достоверность принятой информации - максимальной.

В современных системах цифровой связи часто применяется следующий прием борьбы с потерей информации при передаче. Все сообщение разбивается на порции - блоки. Для каждого блока вычисляется контрольная сумма (сумма двоичных цифр), которая передается вместе с данным блоком. В месте приема заново вычисляется контрольная сумма принятого блока, и если она не совпадает с первоначальной, то передача данного блока повторяется. Так будет происходить до тех пор, пока исходная и конечная контрольные суммы не совпадут.

Скорость передачи информации – это информационный объем сообщения, передаваемого в единицу времени. Единицы измерения скорости информационного потока: бит/с, байт/с и др.

Технические линии информационной связи (телефонные линии, радиосвязь, оптико-волоконный кабель) имеют предел скорости передачи данных, называемый пропускной способностью информационного канала . Ограничения на скорость передачи носят физический характер.

Информация - это набор единиц и нолей, значит задача состоит в точной передаче определенной последовательности этих единиц и нолей из точки А в точку Б, от приемника к передатчику.

Это происходит либо по проводу, по которому идет электрический сигнал, (или световой сигнал в опто-волоконном кабеле), либо в беспроводном случае, этот же сигнал передается с помощью радиоволн.

Чтобы передать последовательность из единиц и нулей нужно всего лишь договориться какой сигнал будет означать единицу, а какой ноль.

Может существовать множество видов таких модуляций столько же сколько и свойств у радиоволн.

  • У волн есть амплитуда. Отлично, можно использовать изменение амплитуды несущего колебания для кодирования наших нолей и единиц - это амплитудная модуляция, в таком случае амплитуда сигнала для передачи нуля может быть (например) в два раза меньше чем для единицы.
  • У волн есть частота. Изменение частоты тоже можно использовать - это уже будет частотная модуляция, такая модуляция похожим образом представляет логическую единицу интервалом с большей частотой, чем ноль.
  • Кодирование с помощью изменений фазы несущего колебания - фазовая модуляция.

Итак, вы разговариваете по телефону, звук попадает в микрофон, затем на преобразователь и на передатчик, передатчик излучает радиоволны модулированными, т. е. измененными так, что они несут определенный сигнал, в случае с телефоном - звуковой сигнал.

В антенне приемника, которая стоит на ближайшем доме/вышке под воздействием радиоволн возникают электрические колебания той же частоты, что и у радиоволны, приемник принимает сигнал, ну а дальше в дело вступает еще куча преобразователей передатчиков приемников и проводов между ними...

Принцип тот же, что и у радио, это практически одно и тоже. Для передачи информации используются электрмагнитные волны радиочастот (то есть с очень большой длиной волны). У волны выбирается какая-то характеристика (амплитуда или частота). Затем происходит так называемая модуляция. Грубо говоря (очень упрощенно) в случае мобильной связи характеристика исходной волны, несущей сигнал, ставится в соответствие с характеристикой акустической волны, то есть фактически с помощью информации, содержащейся в исходной волне, вашим телефоном создаются звуковые волны, которые способны воспринимать ваши уши.

Пусть изменяемый параметр волны несущего сигнала - частота, для примера. На пальцах: вот тут частота n Гц, тут m Гц, тогда этим частотам в соответсвие ставятся частоты звуковой волны, и уже вибратор в телефоне создает жти самые звуковые волны.

Ответить

Прокомментировать

В электронных устройствах существуют АЦП. И ЦАП. Первое преобразует аналоговый сигнал (звук) в цифру, а второе наоборот. Момент работы с цифрой - модуляция. Есть еще теорема Котельникова, которая говорит о том, что любой сигнал можно представить как сумму массива цифры от специальной функции sinc. В основном она и заточена уже в ПО. Для сглаживания сигнала или подавления мерцающих помех используют преобразование Фурье, и поиск максимального соотношения сигнал/(шум+помеха). Есть еще по критерию максимума и минимума (смысл просто в том, относительно чего считаем). Сглаживание - итеративное соединение значений i-х цифр (значений цифрового сигнала, то-есть обычной функции, например синуса) с определенным шагом h. Меньше h, больше i - лучше сглаживание. Но медленнее работа алгоритма.

Все пишут про телефонные разговоры, половина из всех пишет уже на полупрофессиональном "сленге"... Попросили же - как для абсолютных нулей в этом... Эх... Хоть мой ответ будет в самом низу, и до него никто не дойдет, считаю своим священным долгом рассказать:D

Про телефонию тут уже рассказали, а вот про блютуз и вайфай - нет. А там довольно интересно. Технология и там и там одинаковая: используются радиоволны определенного диапазона (все жестко регламентированно). Устройство А берет информацию, пляшет над ней с бубном, преобразует в 1010001, например, и отправляет радиоволнами, а устройство Б преобразует радиоволны в 1010001, пляшет обратный танец с бубном и получает исходную информацию. А теперь немного подробностей веселым и понятным языком:

Зашла Алиса в кафе Боба (ваш телефон оказался с вами в кафе с вайфаем или у друга в гостях). Она выключила музыку, сняла наушники (вы включили вайфай на телефоне), и сразу же услышала, как Боб с прилавка орет на всю кафешку так, что на улице слышно:

Меня зовут Боб (Wi-Fi сеть "Боб"), я рядом (Уровень сигнала: отличный), после кофе меня до сих пор штырит (Скорость передачи: 24,3 Mbps), я предохраняюсь (Безопасность: WPA2 PSK) и не даю незнакомцам (Защищено паролем).

"Какой-то озабоченый придурок... Ну, всяко лучше, чем никого", - подумала Алиса и поздоровалась (подключаясь к вайфаю, ваш телефон первым делом представляется).

Боб на нее посмотрел, подозрительно прищурился и спросил (введите пароль): "Мы ведь не встречались раньше, чего надо?"

"Для продавца в кафе это как-то слишком грубо...", - отметила про себя Алиса, но не стала хамить в ответ, а просто обиженым тоном сказала, что зашла купить кофе с пончиком.

А, простите, пожалуйста! У меня так мало посетителей-ПОКУПАТЕЛЕЙ в последнее время, в основном только школяры приходят поглазеть. Да и день в целом плохой, вот и сорвался нечаянно... Вы, Бога ради, не принимайте близко к сердцу, присаживайтесь, я сейчас все сделаю. Кстати, вот вам наша скидочная карта!

(После проверки пароля, если все верно, роутер выдает вашему телефону ID (как наклейку на лоб повесить - он вас будет узнавать с первого взгляда), и потом говорит ключ шифрования передаваемой информации)

Мноие представляют себе передачу информации радиоволнами как "Из точки А в точку Б. По прямой". На самом деле роутер посылает сигнал во все стороны. Ваш телефон, находясь "в зоне поражения" ловит его и отвечает тоже во все стороны. Роутер ловит сигнал, и т.д. В связи с этим (нет нескольких прямых подключений, а просто огромное облако перемешанных радиоволн) все устройства, посылающие информацию, каждый раз представляются, называют адресата и только потом говорят информацию.

То есть и Алиса и Боб будут всегда орать во весь голос (даже если рядом друг с другом) что-то вроде "Алиса Бобу [лырашубвлоубцло (зашифрованная информация)]", "Боб Алисе [фталлк]", "Боб Всем [Меня зовут Боб (и далее по тексту)]", "Боб Саре [аоыоароаоа]".

Блютуз и телефония работают так же, просто отличаются протоколы (правила, по которым стороны представляются, договариваются и взаимодействуют в целом).

О основных принципах передачи тут рассказали (ЦАП, АЦП, кодирование, радиоволны, модуляция и прочие прибамбасы радиофизики и радиотехники), но почему возможна передача?
Если в целом понятно, как происходит передача информации по обычному проводу (допустим электрический сигнал через ЮЗБ кабель), то распространение радиоволн процесс во многом зависящий от многих параметров среды и конфигурации самой волны (частота/ длина волны).
К примеру передача информации в оптоволоконнных сетях возможна благодаря явлению полного внутреннего отражения света(свет, как мы знаем, частично волна).

Некоторый волны распространяются (скажем грубо) прямо от источника к приемнику. Это так называемая область прямой видимости. Тут припишем телевидение и упомянутую в вопросе мобильную связь. Ну и всеми любимый вайфай. Используемые в них радиоволны относятся к УКВ диапазону (ультракороткие волны), а следовательно к СВЧ (сверх высокие частоты).
От чего зависит возможность распространения этого диапазона? Опять же от наличия препятствий. Различные препятствия (стены, потолки, мебель, металлические двери и т.д.), расположенные между Wi-Fi и устройствами, могут частично или значительно отражать/поглощать радиосигналы, что приводит к частичной или полной потере сигнала.

В городах с многоэтажной застройкой основным препятствием для радиосигнала являются здания. Наличие капитальных стен (бетон+арматура), листового металла, штукатурки на стенах, стальных каркасов и т.п. влияет на качество радиосигнала и может значительно ухудшать работу Wi-Fi-устройств.

Из-за чего это происходит? Открываем школьный учебник физики и находим явление дифракции, основным условие которого является соизмеримость длины волны с размером препятствий. У того же 4g длина волны составляет 1 см до 10 см(а теперь давайте прикинем высоту и длину стен пятиэтажки). Поэтому вышки мобильной связи стараются располагать выше городских зданий для того, чтобы волны не только огибали препятствия (дифракция), но буквально падали нам на голову.

Но не забываем еще о мощности сигнала! У маломощного сигнала больше вероятность попасть в небытие, чем у мощного.

Коротко для непрофессионалов:
1) Передача сигнала через эфир (без проводов) возможна ввиду наличия такого физического явления, как электромагнитные волны, или, короче, радиоволн. (Собственно без них даже жизнь невозможна - это одна из основ природы). Человечество более 100 лет назад научилось использовать радиоволны для передачи информации.
2) Как происходит в подробностях объяснить очень сложно и долго, хотя некоторые тут попытались. Ну вот я тоже попробую. Цифровые сигналы (нули и единицы) специальным образом кодируются, шифруются и преобразовываются. Из набора цифр удаляется избыточная информация (например, много нулей или единиц подряд нет смысла передавать, можно передать только информацию о том, сколько их), потом они специальным образом перемешиваются и добавляется немного избыточной информации - это для возможности восстановления утерянных данных (ошибки при передаче неизбежны), далее они модулируются. В модуляторе определённому набору единиц и цифр присваивается определённое состояние радиоволны (чаще всего это состояние фазы и амплитуды). Чем меньшую последовательность цифр мы кодируем, тем больше помехозащищенность, но меньшее количество информации можно передать за единицу времени (то есть скорость передачи информации будет меньше). Далее сигнал переносится на нужную частоту и оправляется в эфир. На приёмнике происходит обратное преобразование. В реальности для разных протоколов передачи информации добавляются свои дополнительные заморочки: шифрование, защитное кодирование, нередко модулированный сигнал ещё раз перемодулируется (иерархические модуляции). И всё для того, чтобы повысить скорость и качество передачи информации. Чем больше заморочек, тем больше цена устройств, но, когда какой-то протокол передачи информации становится массовым и стандартным, цена на чипы начинает падать, и устройства дешевеют. Так вот Wi-max так толком и не запустили - никак не могли инженеры различных фирм договориться о стандартизации, а LTE быстренько пошёл в массы.
Отличие передачи цифровых сигналов от аналоговых также в том, что цифровые передаются пакетами. Это позволяет работать на одной частоте приёмнику и передатчику по-очереди, а также распределять сигнал между несколькими пользователями одновременно так, что они этого обычно и не замечают. Некоторые протоколы позволяют работать нескольким разным передатчикам на одной частоте, а методы модуляции "справляются" с большой зашумлённостью и с проблемами многолучевого приёма (это когда на приёмник попадает несколько переотражённых копий одной радиоволны, что особенно характерно для городов).
Аналоговые сигналы (изображение и звук) перед передачей по цифровым каналам связи предварительно оцифровываются, то есть переводятся в последовательность нулей и единиц, над которыми, кстати, тоже "издеваются": удаляют излишнюю информацию, кодируют от ошибок и т.д.
Цифровые методы передачи информации позволяют нам эффективнее и экономичнее использовать ограниченный природный ресурс - радиочастотный спектр (совокупность всех возможных радиоволн), но, знаете (всплакнём), если когда-либо инопланетяне обнаружат наши цифровые сигналы, то вряд ли они их раскодируют и поймут - очень уж всё "закручено". По этой же причине мы скорее всего не разберём их сигналы.

Общая характеристика процесса сбора, передачи, обработки и накопления информации.

1. Сбор и регистрация информации - это деятельность субъекта, в ходе которой он получает сведения об интересующем его объекте. Сбор информации может производиться или человеком, или с помощью технических средств и систем - аппаратно. Например, пользователь может получить информацию о движении поездов или самолетов сам, изучив расписание, или же от другого человека непосредственно, либо через какие-то документы, составленные этим человеком, или с помощью технических средств (автоматической справки, телефона и т. д.). Задача сбора информации не может быть решена в отрыве от других задач, - в частности, задачи обмена информацией (передачи).

Сбор и регистрация информации организуется различными способами:

§ Механизированный (например: ввод данных с клавиатуры);

§ Автоматизированный (ввод информации с использованием специальных устройств (например: с помощью сканера можно осуществить ввод любой текстовой и графической информации и даже рукописного текста; с помощью звуковой карты компьютер записывает звуки музыки и голоса);

§ Автоматический способ организации сбора и регистрации информации предусматривает сбор данных непосредственно с датчиков и передачу их в ЭВМ без участия человека.

Передача, информации необходима для того или иного ее распространения. Общая схема передачи такова: источник информации - канал связи - приемник (получатель) информации

Передача информации может производиться как до обработки, так и после неё, т.к. исходные данные обрабатываются обычно не в местах их возникновения, а результаты обработки используются различными органами управления, которые находятся по месту обработки информации.

Передача осуществляется с помощью транспортных средств и по каналам связи.

Основными устройствами для быстрой передачи информации на большие расстояния в настоящее время являются телеграф, радио, телефон, телевизионный передатчик, телекоммуникационные сети на базе вычислительных систем.

Для передачи информации с помощью технических средств используются кодирующее устройство, предназначенное для преобразования исходного сообщения источника информации к виду, удобному для передачи, и декодирующее устройство, необходимое для преобразования кодированного сообщения в исходное.

При передаче информации необходимо учитывать тот факт, что информация при этом может теряться или искажаться, т.е. присутствуют помехи. Для нейтрализации помех при передаче информации зачастую используют помехоустойчивый избыточный код, который позволяет восстановить исходную информацию даже в случае некоторого искажения.


Передача информации между компьютерами осуществляется с помощью локальных и глобальных сетей. Передача через локальную сеть позволяет организовать совместную работу отдельных компьютеров, решать одну задачу с помощью нескольких компьютеров, совместно использовать ресурсы и решать множество других проблем. Глобальная сеть предоставляет огромные возможности передачи информации: электронная почта, телеконференции, информационная служба WWW, чаты и т.д..

3. Арифметическая и логическая обработка информации .

Обработка информации - это упорядоченный процесс ее преобразования в соответствии с алгоритмом решения задачи. Арифметическая и логическая обработка информации может выполняться человеком в «рукопашную» с использованием различных технических устройств, например, калькулятора или с помощью компьютера с использованием различных программ, учитывающих особенности решаемых задач.

По стадии обработки информация может быть :

Первичная информация - это информация, которая возникает непосредственно в процессе деятельности объекта и регистрируется на начальной стадии.

Вторичная информация - это информация, которая получается в результате обработки первичной информации и может быть промежуточной и результатной.

Промежуточная информация используется в качестве исходных данных для последующих расчетов.

Результатная информация получается в процессе обработки первичной и промежуточной информации и используется для выработки управленческих решений.

4. Хранение информации - это процесс поддержания исходной информации в виде, обеспечивающем выдачу данных по запросам конечных пользователей в установленные сроки. Хранение информации организуется как в памяти компьютера, так и на технических носителях (различных дисках), на бумажных носителях.

5. Преобразование информации в вид, удобный для её анализа.

После решения задачи обработки информации результат должен быть выдан конечным пользователям в требуемом виде, Эта операция реализуется в ходе решения задачи выдачи информации. Выдача информации, как правило, производится с помощью внешних устройств ЭВМ в виде текстов, таблиц, графиков и пр.

В современном мире системы связи играют важную роль в развитие нашего мира. Каналы передачи информации буквально опутывают нашу планету, связывая различные информационные сети в единую глобальную сеть Интернет. Дивный мир современных технологий включает в себя передовые открытия науки и техники, не редко связанные также с удивительными возможностями квантового мира. Можно с уверенностью сказать, что на сегодняшний день квантовые технологии прочно вошли в нашу жизнь. Любая мобильная техника в наших карманах оснащена микросхемой памяти, работающая с использованием квантового туннелирования заряда. Подобное техническое решение позволило инженерами компании Toshiba построить 1984 году транзистор с плавающим затвором, ставшим основой для построения современных микросхем памяти. Мы каждый день пользуемся подобными устройствами, не задумываясь, на чем основана их работа. И пока физики ломают голову пытаясь объяснить парадоксы квантовой механики, технологическое развитие берет на вооружение удивительные возможности квантового мира.

В данной статье мы рассмотрим интерференцию света, и разберем способы построения канала связи для мгновенной передачи информации с применением квантовых технологий. Хотя многие полагают, что невозможно передавать информацию быстрее скорости света, при правильном подходе даже такая задача становится решаемой. Думаю, вы сами сможете в этом убедиться.

Введение

Наверняка многие знают о явлении под названием интерференция. Пучок света направляется на непрозрачную ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света. На проекционном экране получается целый ряд чередующихся интерференционных полос. Этот опыт, впервые проведенный Томасом Юнгом, демонстрирует интерференцию света, ставший экспериментальным доказательством волновой теории света в начале XIX века.


Логично предположить, что фотоны должны проходить сквозь щели, создавая две параллельные полосы света на заднем экране. Но вместо этого на экране образуется множество полос, в которых чередуются участки света и темноты. Дело в том, что когда свет ведет себя как волна, каждая прорезь является источником вторичных волн. В местах, где вторичные волны достигают экран в одной фазе, их амплитуды складываются, что создает максимум яркости. А там, где волны оказываются в противофазе - их амплитуды компенсируются, что создает минимум яркости. Периодическое изменение яркости при наложении вторичных волн создает на экране интерференционные полосы.

Но почему же свет ведет себя как волна? В начале, ученые предположили, что возможно фотоны сталкиваются между собой и решили выпускать их поодиночке. В течение часа на экране вновь образовалась интерференционная картина. Попытки объяснить данное явление привели к предположению, что фотон разделяется, проходит через обе щели, и сталкиваясь сам собой образует интерференционную картину на экране.

Любопытство ученых не давало покоя. Они хотели знать, через какую щель фотон проходит по настоящему, и решили пронаблюдать. Для раскрытия этой тайны перед каждой щелью поставили детекторы, фиксирующей прохождение фотона. В ходе эксперимента выяснилось, что фотон проходит только через одну щель, либо через первую, либо через вторую. В результате на экране образовались две параллельные полосы света, без единого намека на интерференцию. Наблюдение за фотонами разрушило волновую функцию света, и фотоны начали вести себя как частицы! Пока фотоны находятся в квантовой неопределенности, они распространяются как волны. Но когда за ними наблюдают, фотоны теряют волновую функцию и начинают вести себя как частицы.

Далее опыт повторили еще раз, с включенными детекторами, но без записи данных о траектории движения фотонов. Несмотря на то, что опыт полностью повторяет предыдущий, за исключением возможности получения информации, через некоторое время на экране вновь образовалась интерференционная картина из светлых и темных полос.

Получается, что влияние оказывает не любое наблюдение, а только такое, при котором можно получить информацию о траектории движения фотонов. И это подтверждает следующий эксперимент, когда траектория движения фотонов отслеживается не с помощью детекторов установленных перед каждой щелью, а с помощью дополнительных ловушек, по которым можно восстановить траекторию движения не оказывая взаимодействия к исходным фотонам.

Квантовый ластик

Начнем с самой простой схемы (это именно схематичное изображение эксперимента, а не реальная схема установки).


Отправим лазерный луч на полупрозрачное зеркало (ПП) . Обычно такое зеркало отражает половину падающего на него света, а другая половина проходит насквозь. Но фотоны, будучи в состоянии квантовой неопределенности, попадая на полупрозрачное зеркало, выбирают оба направления одновременно. Затем, каждый луч отражаясь зеркалами (1) и (2) попадает на экран, где наблюдаем интерференционные полосы. Все просто и ясно: фотоны ведут себя как волны.


Теперь попытаемся понять, по какому же именно пути прошли фотоны – по верхнему или по нижнему. Для этого на каждом пути поставим даун–конверторы (ДК) . Даун–конвертор – это прибор, который при попадании в него одного фотона рождает 2 фотона на выходе (каждая с половиной энергии), один из которых попадает на экран (сигнальный фотон ), а второй попадает в детектор (3) или (4) (холостой фотон ). Получив данные с детекторов мы будем знать, по какому пути прошел каждый фотон. В этом случае интерференционная картина исчезает, ведь мы узнали, где именно прошли фотоны, а значит, разрушили квантовую неопределенность.


Далее мы немного усложним эксперимент. Поставим на пути каждого «холостого» фотона отражающие зеркала и направим их на второе полупрозрачное зеркало (слева от источника на схеме). Прохождение второго полупрозрачного зеркала стирает информацию о траектории холостых фотонов и восстанавливает интерференцию (согласно схеме интерферометра Маха Цендера). Не зависимо от того, какой из детекторов сработает, мы не сможем узнать по какому пути прошли фотоны. Этой замысловатой схемой мы стираем информацию о выборе пути и восстанавливаем квантовую неопределенность. В результате на экране будет отображаться интерференционная картина.

Если мы решим выдвинуть зеркала, то «холостые » фотоны вновь попадут на детекторы (3) и (4) , и как мы знаем, на экране интерференционная картина исчезнет. Это означает, что меняя положение зеркал, мы можем менять отображаемую картину на экране. Значит, можно воспользоваться этим для кодирования двоичной информации.


Можно немного упростить эксперимент и получить тот же результат, двигая полупрозрачное зеркало на пути «холостых» фотонов:


Как мы видим, «холостые» фотоны преодолевают больше расстояния, чем их партнеры, которые попадают на экран. Логично предположить, если изображение на экране формируется раньше, то полученная картина не должна соответствовать тому, определяем ли мы траекторию фотонов или стираем эту информацию. Но практические опыты показывают обратное – не зависимо от расстояния, изображение на экране всегда соответствует выполненным действиям с холостыми фотонами. Согласно информации из википедии :
Основной результат эксперимента заключается в том, что не имеет значения, был процесс стирания выполнен до или после того, как фотоны достигли экрана детектора.
Подобный опыт также описывается в книге Брайана Грина «Ткань космоса и пространство» . Это кажется невероятным, меняющим причинно-следственные связи. Попробуем разобраться что к чему.

Немного теории

Если посмотрим специальную теорию относительности Эйнштейна по мере увеличения скорости происходит замедление времени, согласно формуле:

где r – длительность времени, v – относительная скорость движения объекта.

Скорость света является предельной величиной, поэтому для самих частиц света (фотонов) время замедляется до нуля. Правильнее сказать для фотонов не существует времени, для них существует только текущий момент, в котором они пребывают в любой точке своей траектории. Это может казаться странным, ведь мы привыкли полагать, что свет от далеких звезд достигает нас спустя миллионы лет. Но с ИСО частиц света, фотоны достигают наблюдателя в тот же момент времени, как только они излучаются далекими звездами.

Дело в том, что настоящее время для неподвижных объектов и движущихся объектов может не совпадать. Чтобы представить время, необходимо рассмотреть пространство-время в виде непрерывного блока растянутого во времени. Срезы, формирующие блок, являются моментами настоящего времени для наблюдателя. Каждый срез представляет пространство в один момент времени с его точки зрения. Этот момент включает в себя все точки пространства и все события во вселенной, которые представляются для наблюдателя как происходящее одновременно.


В зависимости от скорости движения, срез настоящего времени будет делить пространство-время под разными углами. По направлению движению, срез настоящего времени смещается в будущее. В противоположном направлении, срез настоящего времени смещается в прошлое.


Чем больше скорость движения, тем больше угол среза. При скорости света срез настоящего времени имеет максимальный угол смещения 45°, при котором время останавливается и фотоны пребывают в одном моменте времени в любой точке своей траектории.

Возникает резонный вопрос, каким образом фотон может одновременно находится в разных точках пространства? Попробуем разобраться, что же происходит с пространством на скорости света. Как известно, по мере увеличения скорости наблюдается эффект релятивистского сокращения длины, согласно формуле:

Где l – это длина, а v – относительная скорость движения объекта.

Не трудно заметить, что на скорости света любая длина в пространстве будет сжато до нулевого размера. Значит, по направлению движения фотонов, пространство сжимается в маленькую точку планковских размеров, при котором исчезает само понятие о пространстве-времени. Можно сказать для фотонов не существует пространства, так как вся их траектория в пространстве с ИСО фотонов находится в одной точке.

Итак, теперь мы знаем, что не зависимо от пройденного расстояния сигнальные и холостые фотоны одновременно достигают экрана и детекторов, так как с точки зрения фотонов не существует ни времени ни пространства. Учитывая квантовую сцепленность сигнальных и холостых фотонов, любое воздействие на один фотон будет моментально отражается на состоянии его партнера. Соответственно, картина на экране всегда должна соответствовать тому, определяем ли мы траекторию фотонов, либо стираем эту информацию. Это дает потенциальную возможность моментальной передачи информации. Стоит только учесть, что наблюдатель не движется со скоростью света, и поэтому картину на экране необходимо анализировать после того, как холостые фотоны достигнут детекторов.

Практическая реализация

Оставим теорию теоретикам и вернемся к практической части нашего эксперимента. Чтобы получить картину на экране потребуется включить источник света и направить поток фотонов на экран. Кодирование информации будет происходить на удаленном объекте, движением полупрозрачного зеркала на пути холостых фотонов. Предполагается, что передающее устройство будет кодировать информацию с равными интервалами времени, например, передавать каждый бит данных за сотую долю секунды.


В качестве экрана можно использовать чувствительную цифровую матрицу, чтобы напрямую записывать чередующиеся изменения. Затем записанную информацию необходимо отложить до момента, пока холостые фотоны достигнут своего местоназначения. После этого можно начать поочередно анализировать записанную информацию, чтобы получить передаваемую информацию. Для примера, если кодирующее устройство находится на Марсе, то анализ информации необходимо начинать с опозданием на десять-двадцать минут (ровно на столько, сколько требуется свету, чтобы достичь красную планету). Несмотря на то, что анализ информации производится с отставанием в десятки минут, полученная информация будет соответствовать тому, что передается с Марса в текущий момент времени. Соответственно, вместе с приемным устройством придется устанавливать лазерный дальномер, чтобы точно определить интервал времени, с которого нужно начинать анализировать передаваемую информацию.

Необходимо также учесть, что окружающая среда оказывает негативное влияние на передаваемую информацию. При прохождении фотонов через воздушное пространство происходит процесс декогеренции, увеличивая помеху в передаваемом сигнале. Чтобы максимально исключить влияние окружающей среды можно передавать сигналы в безвоздушном космическом пространстве, используя для этого спутники связи.

Организовав двухстороннюю связь, в перспективе можно построить каналы связи для моментальной передачи информации на любую дальность, до которых смогут добраться наши космические аппараты. Такие каналы связи будут просто необходимы, если потребуется оперативный доступ к сети интернет за пределами нашей планеты.

P.S. Остался один вопрос, которую мы постарались обойти стороной: а что случится, если мы посмотрим на экран до того, как холостые фотоны достигнут детекторов? Теоретически (с точки зрения теории относительности Эйнштейна), мы должны увидеть события будущего. Более того, если отразить холостые фотоны от далеко расположенного зеркала и вернуть их назад, мы могли бы узнать собственное будущее. Но в реальности, наш мир куда более загадочнее, поэтому, трудно дать правильный ответ без проведения практических опытов. Возможно, мы увидим наиболее вероятный вариант будущего. Но как только мы получим эту информацию, будущее может измениться и возникнуть альтернативная ветка развития событий (согласно гипотезе многомировой интерпретации Эверетта). А возможно мы увидим смесь из интерференции и двух полос (если картина будет составлена из всех возможных вариантов будущего).

Необходимость передачи информации для различных объектов оббазируется по-разному. Так, в автоматизированной системе управления предприятием она вызвана тем, что сбор и регистрация информации редко территориально отделены от ее обработки. Процедуры сбора и регистрации информациитрадиционно осуществляются на рабочих местах, а обработка — в вычислительном центре. Передача информации осуществляется различными способами: с помощью курьера, пересылка по почте, доставка транспортными средствами, дистанционная передача по каналам связи. Дистанционная передача по каналам связи сокращает время передачи данных. Стоит сказать, для ее осуществления необходимы специальные технические средства. Некᴏᴛᴏᴩые технические средства сбора и регистрации, собирая автоматически информацию с датчиков, установленных на рабочих местах, передают ее в ЭВМ.

Взаимодействие между территориально удаленными объектами осуществляется за счет обмена данными. Доставка данных по заданному адресу производится с использованием сетей передачи данных. Отметим тот факт - что в современных условиях большое распространение получила распределенная обработка информации, при ϶ᴛᴏм сети передачи данных превращаются в информационно-вычислительные сети. Информационно-вычислительные сети (ИВС) представляют наиболее динамичную и эффективную отрасль автоматизированной технологии процессов ввода, передачи, обработки и выдачи информации. Не стоит забывать, что важнейшим звеном ИВС будет канал передачи данных, структурная схема кᴏᴛᴏᴩого представлена на рис. 4.2.

Рисунок № 4.2. Структурная схема канала передачи данных: УПД - устройство подготовки данных; НКС - непрерывный канал связи; ДКС - дискретный канал связи; УПДс - устройство повышения достоверности

Непрерывный канал связи (НКС) совместно с функционирующими на его концах модемами образует дискретный канал связи (ДКС) При этом, ДКС и устройства повышения достоверности (УПДс) образуют канал передачи данных.

В НКС элементы данных передаются в виде физических сигналов, кᴏᴛᴏᴩые описываются непрерывными функциями времени. Важно знать, что большинство НКС оказываются непригодными для передачи сигналов, отображающих данные, без предварительного их согласования. Стоит сказать, для такого преобразования предусматривают специальные устройства — модемы . Модем представляет собой совокупность модулятора и демодулятора. С помощью модулятора информационный сигнал воздействует на некᴏᴛᴏᴩый параметр сигнала-переносчика, благодаря чему спектр сигнала смещается в область частот, для кᴏᴛᴏᴩых наблюдается наименьшее затухание в выбранном НКС. Обратную операцию - переход от модулированного сигнала (сигнала-переносчика) к модулирующему (информационному сигналу) - осуществляет демодулятор . Понятие ДКС позволяет, отвлекаясь от физической природы процессов, происходящих в НКС, представлять совокупность НКС, и модемов на его концах как некᴏᴛᴏᴩый «черный ящик», на вход кᴏᴛᴏᴩого подается последовательность кодовых символов — входное сообщение. Это входное сообщение может представлять собой некᴏᴛᴏᴩый текст на русском языке, а может быть, и последовательность нулей и единиц. В первом случае говорят, что входной алфавит ДКС — ϶ᴛᴏ обычный алфавит русского языка, во втором — двоичный алфавит (или двоичный код) Аналогичным образом можно описать и примеры для выходного алфавита. В простейшем случае алфавиты на входе и выходе ДКС совпадают. На практике же могут использоваться и ДКС с несовпадающими входным и выходным алфавитами, да и сами алфавиты далеко не ограничены теми примерами, кᴏᴛᴏᴩые были приведены (русский и двоичный) Чаще всего, особенно в теоретических исследованиях и практике вычислительных сетей, рассматриваются ДКС с двоичным алфавитом, когда входное и выходное сообщения представляют собой двоичные кодовые последовательности. Материал опубликован на http://сайт

Наконец, завершая общее описание канала связи, рассмотрим УПДс. УПДс может представлять собой специальную аппаратуру, предназначенную для повышения достоверности передачи данных, а может, особенно в современных информационно-вычислительных сетях, представлять собой специальную программу и ЭВМ, на кᴏᴛᴏᴩой она выполняется, может являться как элементом канала связи, так и элементом системы обработки информации. В качестве простейшего способа повышения достоверности передачи информации может использоваться контроль на четность. Суть ϶ᴛᴏго способа заключается в следующем. На входе в канал связи УПД производит подсчет числа «1» в двоичной кодовой последовательности — входном сообщении. В случае если число «1» оказывается нечетным, в хвост передаваемого сообщения добавляется «1», а если нет, то «0». На принимающем конце канала связи УПД производят аналогичный подсчет, и, если контрольная сумма (число «1» в принятой кодовой последовательности) оказывается нечетной, делается вывод о том, что при передаче произошло искажение информации, в противном случае принятая информация признается правильной (неискаженной) В описанном способе используется один добавочный контрольный разряд. Это позволяет обнаруживать ошибку передачи в случае искажения одного-единственного разряда в сообщении. Этот очень простой способ применяют при передаче данных на большие расстояния. В тех случаях, когда вероятность искажения информации при передаче велика, требуются более изощренные методы, рассмотрение кᴏᴛᴏᴩых требует специальных знаний (прежде всего знания теории вероятности) и выходит за рамки нашего изложения. Но и в последних случаях, когда используется так называемое помехоустойчивое кодирование, очень часто можно выделить некᴏᴛᴏᴩую часть, содержащую символы исходной информационной последовательности, и контрольные разряды (их может быть несколько в отличие от нашего примера) Помехоустойчивые коды позволяют не только принимать решение о правильности передачи информации, но и в ряде случаев производить ее исправление. При контроле на четность единственный способ получить достоверную информацию — повторная передача сообщения. В случае корректирующих кодов, что очень важно при высокой стоимости передачи, имеется возможность исправлять ошибки на принимающем конце канала связи, избегая, таким образом, повторной передачи информации.

Дистанционно может передаваться как первичная информация с мест ее возникновения, так и результатная в обратном направлении. В ϶ᴛᴏм случае результатная информация демонстрируется на различных устройствах: дисплеях, табло, печатающих устройствах. Поступление информации по каналам связи в центр обработки в основном осуществляется двумя способами: на машинном носителе и непосредственно в ЭВМ при помощи специальных программных и аппаратных средств.

Дистанционная передача постоянно развивается и совершенствуется.
Стоит отметить, что особое значение ϶ᴛᴏт способ передачи информации имеет в многоуровневых межотраслевых системах, где применение дистанционной передачи значительно ускоряет прохождение информации с одного уровня управления на другой и сокращает общее время обработки данных.

Машинное кодирование — процедура машинного представления (записи) информации на машинных носителях в кодах, принятых в ЭВМ. Такое кодирование информации осуществляется путем переноса данных первичных документов на магнитные диски, информация с кᴏᴛᴏᴩых затем вводится в ЭВМ для обработки.

Запись информации на машинные носители — трудоемкая операция, в процессе кᴏᴛᴏᴩой возникает наибольшее количество ошибок. По϶ᴛᴏму обязательно выполняются операции контроля записи разными методами на специальных устройствах либо на ЭВМ. Подготовленные и проконтролированные машинные носители хранятся в ϲᴏᴏᴛʙᴇᴛϲᴛʙующем подразделении центра обработки, где ведутся их учет, комплектация, а также выдача для обработки и решения задач на ЭВМ.

Лучшие статьи по теме