Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Интернет, Wi-Fi, локальные сети
  • Параметрические измерительные преобразователи. Генераторные измерительные преобразователи В параметрических преобразователях выходной величиной является

Параметрические измерительные преобразователи. Генераторные измерительные преобразователи В параметрических преобразователях выходной величиной является

ЛЕКЦИЯ 15.
Генераторные измерительные преобразователи
В генераторных преобразователях выходной величиной является ЭДС или заряд, функционально связанные с измеряемой неэлектрической величиной.
Термоэлектрические преобразователи (термопары) .
Основаны на термоэлектрическом эффекте, возникающем в цепи термопары. Эти преобразователи применяются для измерения температуры. Принцип действия термопары поясняется рис. 15.1,а, где изображена термоэлектрическая цепь, составленная из двух разнородных проводников А и В . Точки 1 и 2 соединения проводников называются спаями термопары. Если температуры t спаев 1 и 2 одинаковы, то ток в термоэлектрической цепи отсутствует. Если же температура одного из спаев (например, спая 1) выше, чем температура спая 2, то в цепи возникает термоэлектродвижущая сила (ТЭДС) Е , зависящая от разности температур спаев
Е = f (t 1 – t 2 ). (15.1)
Если поддерживать температуру спая 2 постоянной, то
Е = f (t 1 ).
Эту зависимость используют для измерения температуры с помощью термопар. Для измерения ТЭДС электроизмерительный прибор включают в разрыв спая 2 (рис. 15.1, б). Спай 1 называют горячим (рабочим) спаем, а спай 2 – холодным (концы 2 и 2’ называют свободными концами).
Чтобы ТЭДС термопары однозначно определялась температурой горячего спая, необходимо температуру холодного спая поддерживать всегда одинаковой.
Для изготовления электродов термопар используют как чистые металлы, так и специальные сплавы стандартизованного состава. Градуировочные таблицы для стандартных термопар составлены при условии равенства температуры свободных концов 0 о С. На практике не всегда удается поддерживать эту температуру. В таких случаях в показания термопары вводят поправку на температуру свободных концов. Существуют схемы для автоматического введения поправок.
Конструктивно термопары выполняются в виде двух изолированных термоэлектродов с рабочим спаем, получаемым способом сварки, помещенных в защитную арматуру, предохраняющую термопару от внешних воздействий и повреждений. Рабочие концы термопары выведены в головку термопары, снабженную зажимами для включения термопары в электрическую цепь.
В табл. 15.1 приведены характеристики термопар, выпускаемых промышленностью. Для измерения высоких температур применяют термопары ПП, ПР и ВР. Термопары из благородных металлов используют при измерении с повышенной точностью.
В зависимости от конструкции, термопары могут иметь тепловую инерцию, характеризуемую постоянной времени от секунд до нескольких минут, что ограничивает возможность их применения для измерения быстроменяющихся температур.
Кроме включения измерительного прибора в спай термопары возможно включение прибора в «электрод», т.е. в разрыв одного из термоэлектродов (рис. 15.1, в). Такое включение, в соответствии с (15.1), позволяет измерять разность температур t 1 – t 2 . Например, может быть измерен перегрев обмоток трансформатора над температурой окружающей среды при его испытаниях. Для этого рабочий спай термопары заделывают в обмотку, а свободный спай оставляют при температуре окружающей среды.
Т а б л и ц а 15.1. Характеристики термопар
Обозначение
Диапазон применения, о С
Медь – копель
Хромель – копель
Хромель – алюмель
Платинородий (10% Rh ) – платина
Платинородий (30% Rh ) – платинородий (6% Rh )
Вольфрамрений (5% Re ) – вольфрамрений (20% Re )
Требование постоянства температуры свободных концов термопары вынуждает по возможности удалять их от места измерения. Для этой цели применяют так называемые удлиняющие или компенсационные провода КП, подключаемые к свободным концам термопары с соблюдением полярности (рис. 15.1,г). Компенсационные провода составляются из разнородных проводников, которые в интервале возможных колебаний температуры свободных концов развивают в паре между собой такую же ТЭДС, как и термопара. Поэтому, если места подключения компенсационных проводов находятся при температуре t 2 , а температура в месте подключения термопары к прибору t 0 , то ТЭДС термопары будет соответствовать ее градуировке при температуре свободных концов t 0 .
Максимальная развиваемая стандартными термопарами ТЭДС составляет от единиц до десятков милливольт.
Для измерения ТЭДС могут применяться магнитоэлектрические, электронные (аналоговые и цифровые) милливольтметры и потенциометры постоянного тока. При использовании милливольтметров магнитоэлектрической системы следует иметь в виду, что измеряемое милливольтметром напряжение на его зажимах
где I – ток в цепи термопары, а R V – сопротивление милливольтметра.
Так как источником тока в цепи является термопара, то
I = E / (R V + R ВН ),
где R ВН – сопротивление участка цепи внешнего по отношению к милливольтметру (т.е. электродов термопары и компенсационных проводов). Поэтому измеряемое милливольтметром напряжение будет равно
U = E / (1+ R ВН / R V ).
Таким образом, показания милливольтметра тем больше отличаются от ТЭДС термопары, чем больше отношение R BH / R V . Для уменьшения погрешности от влияния внешнего сопротивления милливольтметры, предназначенные для работы с термопарами (так называемые пирометрические милливольтметры) градуируются для конкретного типа термопар и при определенном номинальном значении R BH , указываемом на шкале прибора. Пирометрические милливольтметры серийно выпускаются классов точности от 0.5 до 2.0.
Входное сопротивление электронных милливольтметров очень велико, и влияние сопротивления R BH на показания пренебрежимо мало.
Пьезоэлектрические преобразователи .
Такие преобразователи основаны на использовании прямого пьезоэлектрического эффекта, заключающегося в появлении электрических зарядов на поверхности некоторых кристаллов (кварца, турмалина, сегнетовой соли и др.) под влиянием механических напряжений. Пьезоэлектрическим эффектом обладают также некоторые поляризованные керамические материалы (титанат бария, цирконат-титанат свинца).
Если из кристалла кварца вырезать пластинку в форме параллелепипеда с гранями, расположенными перпендикулярно оптической 0 z , механической 0 y и электрической 0 х осям кристалла (рис. 15.2), то при воздействии на пластинку усилия F х , направленного вдоль электрической оси, на гранях х появляются заряды
Q x = K п F x , (15.2)
где К п – пьезоэлектрический коэффициент (модуль).
При воздействии на пластину усилия F у вдоль механической оси, на тех же гранях х возникают заряды
Q y = K п F y a / b ,
где а и b – размеры граней пластины. Механическое воздействие на пластину вдоль оптической оси появления зарядов не вызывает.

Пьезоэлектрический эффект является знакопеременным; при изменении направления прилагаемого усилия знаки зарядов на поверхности граней меняются на противоположные. Материалы сохраняют свои пьезоэлектрические свойства только при температурах ниже точки Кюри.

Величина пьезоэлектрического коэффициента (модуля) К п и температура точки Кюри для кварца и распространенных керамических пьезоэлектриков приведены в табл. 15.2.
Изотовление преобразователей из пьезокерамики значительно проще, чем из монокристаллов. Керамические датчики производят по технологии, обычной для радиокерамических изделий – путем прессования или литья под давлением; на керамику наносятся электроды, к электродам привариваются выводы. Для поляризации керамические изделия помещают в сильное электрическое поле, после чего они приобретают свойства пьезоэлектриков.
Электродвижущая сила, возникающая на электродах пьезоэлектрического преобразователя, довольно значительна – единицы вольт. Однако, если сила, приложенная к преобразователю, постоянна, то измерить ЭДС трудно, поскольку заряд мал и быстро стекает через входное сопротивление вольтметра. Если же сила переменна и при этом период изменения силы много меньше постоянной времени разряда, определяемой емкостью преобразователя и сопротивлением утечки, то процесс утечки почти не влияет на выходное напряжение преобразователя. При изменении силы F по закону F = F m sin  t ЭДС также изменяется синусоидально.
Таким образом, измерение неэлектрических величин, которые могут быть преобразованы в переменную силу, действующую на пьезоэлектрический преобразователь, сводится к измерению переменного напряжения или ЭДС.
Т а б л и ц а 15.2. Параметры кварца и керамических пьезоэлектриков
Материал (марка)
Точка Кюри, о С
Титанат бария (ТБ-1)
Цирконат-титанат свинца (ЦТС-19)
70.0х10 -12
119.0х10 -12
Пьезоэлектрические измерительные преобразователи находят широкое применение для измерения параметров движения: линейного и вибрационного ускорения, удара, акустических сигналов.
Эквивалентная схема пьезоэлектрического преобразователя представлена на рис. 15.3,а) в виде генератора с внутренней емкостью С . Поскольку мощность такого пьезоэлемента чрезвычайно мала, то для измерения выходного напряжения необходимо применять приборы с большим входным сопротивлением (10 11 …10 15 Ом).

Для увеличения полезного сигнала пьезодатчики выполняются из нескольких, последовательно соединенных элементов.

Устройство пьезоэлектрического датчика для измерения вибрационного ускорения показано на рис. 15.3,б). Пьезоэлемент (обычно из пьезокерамики), нагруженный известной массой m , помещен в корпус 1 и через выводы 2 включен в цепь электронного милливольтметра V . Подставив в формулу для возникающего на гранях заряда выражение F = ma , где а – ускорение, и учтя (15.2), получим
U = K u a ,
где K u – коэффициент преобразования датчика по напряжению.

PAGE 6


EMBED Visio.Drawing.6

Выходной величиной в параметрических преобразователях является параметр электрической цепи – электрическое сопротивление или его со­ставляющие (R, L, C). Для использования параметрического преобра­зователя необходим дополнительный источник питания, обеспечиваю­щий образование выходного сигнала преобразователя.

К наиболее часто применяемым параметрическим преобразователям относятся реостатные , тензочувствительные (тензорезисторы ), термочувствительные (терморезисторы или термометры сопротивления ), индуктивные , емкостные, оптоэлектронные (фоторезисторы, фотодиоды и др.), ионизационные и др.

Принцип действия реостатных преобразователей основан на измене­нии электрического сопротивления проводника под влиянием входной величины – механического перемещения. Реостатный преобразователь (рис.3.1) представляет собой реостат, подвижный контакт которого переме­шается под действием измеряемой неэлектрической величины. Обмотку преобразователя изготавливают из сплавов (платина с иридием, константан, нихром, фехраль и др.).

Подобные преобразователи об­ладают статической характеристикой преобразования со ступенчатым характером, поскольку сопротивление измеряется скачками, равными соп­ротивлению одного витка, что вызывает погрешность

где DR – сопротивление одного витка;

R – полное сопротивление преобразователя.


Эта погрешность отсутствует в реохордных преобразователях, в ко­торых щетка скользит вдоль оси проволоки.

Для получения нелинейной функции преобразования приме­няют функциональные реостатные преобразователи. Нужный ха­рактер преобразования часто достигается профилированием кар­каса преобразователя (рис.3.1, в).

Достоинства реостатного преобразователя: относительная просто­та конструкции, возможность получения высокой точности преобразо­вания и значительных по уровню выходных сигналов. Основной недос­таток – наличие скользящего контакта.

Тензоэффект , положенный в основу работы тензорезисторов , заклю­чается в измерении активного сопротивления проводника (полупроводника) под действием вызываемого в нем механического напряжения и деформации.

Если проволоку подвергнуть механическому воздействию, на­пример, растяжению, то сопротивление ее изменится. Относитель­ное изменение сопротивления проволоки

DR/R = S ∙ Dl/l ,

где S – коэффициент тензочувствительности;



Dl/l – относительная де­формация проволоки.

Изменение сопротивления проволоки при механическом воз­действии на нее объясняется изменением геометрических разме­ров (длины, диаметра) и удельного сопротивления материала.

Тензочувствительные проволочные преобразователи представляют собой тонкую зигзагообразно уложенную и приклеенную к подложке проволоку. Преобразователь устанав­ливают таким образом, чтобы направление ожидаемой деформации совпадало с продольной осью проволочной решетки. В качестве материа­ла для преобразователя обычно используют константановую проволоку (у константана – малый температурный коэффициент сопротивления) и для подложки – тонкую бумагу (0,03…0,05 мм) и плёнку лака либо клея (БФ-2, БФ-4, бакелитовый и др.).

Распространение также получили фольговые преобразователи , у которых вместо проволоки используется фольга, и пленочные тензорезисторы , получаемые путем возгонки тензочувствительного матери­ала с последующим осаждением его на подложку.

Достоинства тензорезисторов: линейность статической характерис­тики преобразования, простота конструкции и малые габариты. Основной недостаток – низкая чувствительность.

В тех случаях, когда требуется высокая чувствительность, находят применение полупроводниковые тензочувствительные преобразователи (поли­кристаллические из порошкообразно­го полупроводника и монокристалли­ческие из кристалла кремния). Поскольку чувствительность полупровод­никовых тензорезисторов в десятки раз выше, чем у металлических, и, кроме того, интег­ральная технология позволяет в одном кристалле кремния формировать одно­временно как тензорезисторы, так и микроэлектронный блок обработки, то в последние годы получили преимущественное развитие интегральные полу­проводниковые тензочувствительные преобразователи. Такие элементы реализуются либо по технологии диффузионных резисторов с изоляцией их от проводящей кремниевой подложки p-n-переходами – технология «крем­ний на кремнии», либо по гетероэпитаксиальной технологии «кремний на диэлектрике» на стеклокерамике, кварце или сапфире. Для тензочувствительных преобразователей, осо­бенно полупроводниковых, сущест­венно влияние температуры на их упругие и электрические характеристики, что требует применения специальных схем температурной компенсации по­грешностей (в частности, с этой целью в расширенной схеме тензомоста ис­пользуются компенсационные резис­торы и терморезисторы). Особенно широкое применение в изготовлении измерительных преобразователей давления в силу сво­их высоких механических, изолирую­щих и теплоустойчивых качеств полу­чила технология КНС – «кремний на сапфире».



Совершенствование технологии изготовления полупроводниковых тензорезисторов создало возможность изготавливать тензоре­зисторы непосредственно на кристаллическом элементе, выполнен­ном из кремния или сапфира. Упругие элементы кристаллических материалов обладают упругими свойствами, приближающимися к идеальным. Сцепление тензорезистора с мембраной за счет молекулярных сил позволяют отказаться от использования клеющих материалов и улучшить метрологические характеристики преобразователей. На рис.3.2, а показана сапфировая мембрана 3 с расположенными на ней однополосковыми тензорезисторами p -ти­па с положительной 1 и отрицательной 2 чувствительностями. По­ложительной чувствительностью обладает тензорезистор, у которо­го отношение >0, если же <0 – чувствительность отри­цательна.

Структура однополоскового тензорезистора приведена на рис.3.2, б. Здесь: 1 – тензорезистор; 2 – защитное покрытие; 3 – металлизирован­ные токоведущие дорожки; 4 – упругий элемент преобразователя (сапфировая мембрана). Тензорезисторы можно рас­полагать на мембране так, что при деформации они будут иметь разные по знаку приращения сопротивления. Это позволяет создавать мостовые схемы, в каждое из плеч которого вклю­чаются тензорезисторы с соответствую­щим значением и даже термоком­пенсационные элементы.

Тензорезисторы при­меняют для измерения деформаций и других неэлектрических величин – усилий, давлений, моментов и т.п.

Принцип действия терморезистора основан на зависимости электрического сопротивления проводников или полупроводников от температуры.По режиму работы терморезисторы различают перегревные и без преднамеренного перегрева . Перегревные ис­пользуют для измерения скорости, плотности, состава среды и др. В перегревных преобразователях электрический ток вызывает перегрев, зависящий от свойств среды. Последние применяются для измерения температуры окружающей среды.

Распространение получили терморезисторы, выполненные из медной или платиновой проволоки. Стандартные платиновые терморезисторы применяют для из­мерения температуры в диапазоне от –260 до +1100 °С, мед­ные – в диапазоне от –200 до +200 °С (ГОСТ 6651–78). Низкотемпературные платиновые терморезисторы (ГОСТ 12877–76) применяют для измерения температуры в пределах от –261 до –183°С.

На рис.3.3, а показано устройство платинового терморези­стора. В каналах керамической трубки 2 расположены две (или четыре) секции спирали 3 из платиновой проволоки, соединенные между собой последовательно.



Рисунок 3.3 − Устройство и внешний вид арматуры платинового

термометра сопротивления

К концам спирали припаивают выводы 4, используемые для включения терморезистора в изме­рительную цепь. Крепление выводов и герметизацию керамиче­ской трубки производят глазурью 1 . Каналы трубки засыпают порошком безводного оксида алюминия, выполняющим роль изо­лятора и фиксатора спирали. Порошок безводного оксида алю­миния, имеющий высокую теплопроводность и малую тепло­емкость, обеспечивает хорошую передачу теплоты и малую инер­ционность терморезистора. Для защиты терморезистора от механических и химических воздействий внешней среды его по­мещают в защитную арматуру (рис.3.3, б) из нержавеющей стали.

Для медных терморезисторов зависимость сопротивления от темпера­туры выражается уравнением

R=R 0 (1+α t ) при –50 0 С ≤ t ≤ +180 0 С,

где R 0 – сопротивление при t =0 0 С; α = 4,26∙10 –3 К –1 .Для платиновых –

R=R 0 при 0 0 С ≤ t ≤ +650 0 С,

где А= 3,968∙10 –3 К –1 ; В= 5,847∙10 –7 К –2 ; С =–4,22∙10 –12 К –4 .

Помимо платины и меди, для изготовления терморези­сторов используют никель (в странах дальнего зарубежья).

Для измерения температуры применяют также полупровод­никовые терморезисторы (термисторы и позисторы ) различных типов, кото­рые характеризуются большой чувствительностью (температурный коэффициент сопротивления ТКС термисторов отрицательный и при 20°С в 10–15 раз превышает ТКС меди и платины, ТКС позисторов положительный и несколько хуже) и имеют более высокие сопротивления (до 1 МОм) при весьма малых размерах. Недостаток термисторов – плохая воспроизводимость и нелинейность характеристики преобразования.

Термисторы используются в диапазоне температур от –60 до +120°C.

где R и R 0 – сопротивления терморезистора при температурах соответственно t и t 0 ;

t 0 – начальная температура рабочего диапазона;

В – коэффициент преобразования.

К термочувствительным преобразователям относят также термодиоды и термотранзисторы , у которых при изменении температуры изменяет­ся величина сопротивления р-n перехода. Эти приборы обычно приме­няются в диапазоне от –80° до +150° С. Чаще всего термодиоды и терморезисторы включают в мостовые цепи и измерительные схемы в виде делителей напряжения. К достоинствам таких преобразователей относят высокие чувствительность и надежность, малые габариты, невысокую стоимость и малую инерционность. Основные недостатки: уз­кий диапазон рабочей температуры и плохая воспроизводимость ста­тической характеристики преобразователя.

Принцип действия индуктивных преобразователей основан на зависи­мости индуктивности или взаимной индуктивности обмоток на магнитопроводе от положения, геометрических размеров и магнитного сос­тояния элементов их магнитной цепи (рис.3.4). На рис.3.4 схематически показаны различные типы индук­тивных преобразователей. Индуктивный преобразователь (рис.3.4, а) с переменной длиной воздушного зазора δ характе­ризуется нелинейной зависимостью L = f (δ). Такой преобразова­тель обычно применяют при перемещениях якоря на 0,01-5 мм.

Рисунок 3.4 − Различные конструкции индуктивных преобразователей

Значительно меньшей чувствительностью, но линейной зависимо­стью L = f (s) отличаются преобразователи с переменным сечениемвоздушного зазора (рис.3.4, б). Эти преобразователи используют при перемещениях до 10…15 мм.

Широко распространены индуктивные дифференциальные преобразователи (рис.3.4, в), в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов. Дифференциальные преобразователи в сочетании с соответствующей измерительной цепью (обычно мостовой) имеют более высокую чувствитель­ность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов и сниженное результирующее усилие на якорь со стороны электромагнита, чем недифференциальные преобразователи.

На рис.3.4,г показана схема включения дифференциаль­ного индуктивного преобразователя , у которого выходными вели­чинами являются взаимные индуктивности. Такие преобразова­тели называют взаимно-индуктивными или трансформаторными. При питании первичной обмотки переменным током и при симмет­ричном положении якоря относительно электромагнитов ЭДС на выходных зажимах равна нулю. При перемещении якоря на выходных зажимах появляется ЭДС.

Для преобразования сравни­тельно больших перемещений (до 50…100 мм) применяют трансформаторные преобразователи с незамкнутой магнитной цепью (рис.3.4, д).

В горной промышленности получили распространение магнитоупругие преобразователи (рис.3.4, е ), действие которых основано на использовании эф­фекта зависимости магнитной проницаемости (магнитного сопротивле­ния цепи) от величины механического воздействия (сжатия или рас­тяжения) на ферромагнитный сердечник преобразователя. Различают магнитоупругие датчики дроссельного и трансформаторного типов. Последние могут контролировать только усилие сжатия, однако обладают большей чувствительностью.

Достоинствами индуктивных и магнитоупругих преобразователей яв­ляются простота и надежность в работе, значительная мощность вы­ходных сигналов. Основными недостатками – обратное воздействие преобразователя на исследуемый объект (воздействие электромагни­та на якорь) и влияние инерции якоря на частотные характеристики прибора.

Принцип действия емкостных преобразователей ос­нован на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от значения диэлектри­ческой проницаемости среды между ними. Они представляют собой конденсаторы различных конструкций, преобразующие механические линейные или угловые пе­ремещения, а также давление, влажность или уровень среды в изме­нение электрической емкости.

в )

Рисунок 3.5 − Различные конструкции емкостных преобразователей

Применяют также дифференциальные преобразователи (рис.3.5, б), у которых имеется одна подвижная и две непод­вижные пластины. При воздействии измеряемой величины х у этих преобразователей одновременно изменяются емкости С 1 и С 2 . Такие преобразователи используют для измерения сравнительно больших линейных (более 1 мм) и угловых перемещений. В этих преобразователях легко получить требуемую характеристику преобразо­вания путем профилирования пластин.

Преобразователи с использованием зависимости C = f 1 () применяют для измерения уровня жидкостей, влажности ве­ществ, толщины изделий из диэлектриков и т. п. Для примера (рис.3.5, в) приведем устройство емкостного уровнемера . Емкость между электродами, опущенными в сосуд, зависит от уровня жидкости, так как изменение уровня ведет к изменению средней диэлектрической проницаемости среды между электродами. Изменением конфигурации пластин можно получить желаемый характер зависимости показаний прибора от объема (массы) жидкости.

Для измерения выходного параметра емкостных преобразо­вателей применяют мостовые цепи и цепи с использованием резо­нансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, способные реагировать на переме­щения порядка 10 –7 мм. Цепи с емкостными преобразователями обычно питают током повышенной частоты (до десятков мега­герц), что вызвано желанием увеличить сигнал, попадающий в измерительный прибор, и необходимостью уменьшить шунтиру­ющее действие сопротивления изоляции.

Полупроводниковые фоточувствительные преобразователи в качестве чувствительного элемента имеют светочувствительный слой, на­несенный на подложку (стеклянную пластинку). Сопротивление этого слоя обратно пропорционально интенсивности светового потока или мощности источника освещения. Фоторезисторы , фотодиоды и фототранзисторы обладают сравнительно высокой стабильностью, хорошей чувствительностью, но их применение ограничивается при наличии пыли, например угольной, препятствующей нормальной работе.

Действие ионизационных преобразователей основано на явлении ио­низации газа или люминесценции некоторых веществ под действием ионизирующего излучения. В качестве ионизирующих агентов применяют a –, b– и g– лучи радиоактивных веществ, иногда рентгеновские лучи и нейтронное излучение . Выбор типа ионизационного преобразователя зависит во многом от ионизирующего излучения. Гамма–лучи (электромагнитные колебания малой длины волны – 10 –8 …10 –11 см)об­ладают большой проникающей способностью.

Конструкции ионизационных камер и счетчиков разнообразны и зависят от вида излучения. В качестве источников ионизирующего излучения обычно используют кобальт-60, стронций-90, плутоний-239 и др.

Преимущества ионизационных преобразователей – в возможности бес­контактных измерений в агрессивных или взрывоопасных средах, сре­дах, имеющих высокою температуру или находящихся под большим дав­лением. Основной недостаток: необходимость применения биологической защиты при высокой активности источника излучения.

Генераторные преобразователи

В генераторных преобразователях выходной величиной является ЭДС или заряд, функционально связанный с измеряемой неэлектрической величиной.

Рассмотрим наиболее распространенные виды генераторных преобразователей.

Термоэлектрические преобразователи работают на термоэлектричес­ком эффекте, возникающем в цепи термопары : при разности температур в точках 1 и 2 (рис.3.6) соединения двух разнородных проводников в цепи термопары возникает термоЭДС .

Точку соединения проводников (электродов) 1 называют рабочим концом термопары, точки 2 и 2" – свободны­ми концами. Чтобы термоЭДС в цепи термопары однозначно определя­лась температурой рабочего конца, необходимо температуру свободных концов термопары поддерживать одинаковой и не­изменной. Градуировку термоэлектрических термометров произво­дят обычно при температуре сво­бодных концов 0°С. Градуировочные таблицы для стандартных термопар также составлены при условии равенства температуры свободных концов 0°С. При практическом применении термоэлектри­ческих термометров температура свободных концов термопары обычно не равна 0°С и поэтому необходимо вводить поправку.

Тахогенераторы предназначены для измерения угловой скорости вращающихся объектов. Ротор тахогенераторов механически связывают с валом испытуемого элек­тродвигателя или исполнительного механизма, а об угловой скорости w судят по выходной ЭДС генератора.

Из тахогенераторов наибольшее распространение получили тахогенераторы постоянного тока , выпускаемые с постоянными магнитами либо с независимым возбуждением. Область их применения весьма разнообразна: прецизионные тахогенераторы постоянного тока используются в авиации, судостроении, станкостроении, металлургической и других отраслях промышленности. К преимуществам этих датчиков относят достаточно высокую точность и наличие выходного сигнала постоянного тока, удобного для последующей обработки. Основным недостатком этих тахогенераторов является наличие коллекторно-щеточного узла, снижающего надежность работы и долговечность преобразователя.

Синхронные тахогенераторы имеют малое внутреннее сопротивление, что позволяет получить от них достаточно большие мощности. При изменении частоты вращения ротора в синхронных машинах изменяется не только амплитуда выходного напряжения, но и его частота. Благодаря механической устойчивости синхронные тахогенераторы нашли применение в трамваях, локомотивах, крановом хозяйстве и др.

Асинхронные тахогенераторы по конструкции подобны двухфазным асинхронным двигателям. Их роторы обычно выполняют в виде тонкостенного металлического цилиндра. Две обмотки статора тахогенератора сдвинуты на 90° относительно друг друга. К од­ной обмотке подводят напряжение питания, а с измерительной обмот­ки снимают ЭДС. При подаче напряжения питания постоян­ной величины и частоты пульсирующий магнитный поток, пересекая ротор, индуктирует в измерительной обмотке ЭДС, пропорциональную угловой скорости w ротора, приводимого в движение контролируемой машиной или механизмом. Основное достоинство асинхронных тахогенераторов состоит в том, что независимо от частоты вращения ротора ЭДС переменного тока на выходе такого тахогенератора имеет постоянную частоту.

К основным недостаткам тахогенераторов относят ог­раниченный частотный диапазон измеряемых величин. В последние годы тахогенераторы постепенно вытесняются фотоимпульсными и индукционными датчиками, а также специальными интеллектуальными преобразователями – шифраторами углового перемещения (положения) .

В фотоимпульсных датчиках импульсы в оптоэлектронной паре источник излучения – приемник излучения (светодиод – фотопреобразователь) создаются при помощи дисков с прорезями или отверстиями, в некоторых приводах применяют вращающиеся детали машин. В подавляющем большинстве шифраторов положения также используют в качестве чувствительного элемента оптоэлектронную пару.

Импульсы индукционных датчиков создаются под влиянием пульсирующего или знакопеременного магнитного потока. В качестве тела, модулирующего поток, служат специальные зубчатые колеса либо вращающиеся ферромагнитные детали машин.

В пьезоэлектрических преобразователях используется эффект появ­ления электрических зарядов на поверхности некоторых кристаллов (кварц, турмалин, сегнетова соль и др.) под влиянием механичес­ких напряжений.

Рисунок 3.7

Устройство пьезоэлектрического преобразователя для изме­рения переменного давления газа показано на рис.3.7. Давле­ние Р через металлическую мембрану 1 передается на зажатые между металлическими прокладками 2 кварцевые пластинки 3 . Шарик 4 способствует равномерному распределению давления по поверхности кварцевых пластинок. Средняя прокладка соединена с выводом 5 , проходящим через втулку из хорошего изоля­ционного материала. При воздействии давления Р между выводом 5 и корпусом преобразователя возникает разность потенциалов

Практическая работа №4

Важнейшими метрологическими характеристиками преобразователей являются: номинальная статическая характеристика преобразования, чувствительность, основная погрешность, дополнительные погрешности, или функции влияния, вариация выходного сигнала, выходное полное сопротивление, динамические характеристики и т. д.

К важнейшим неметрологическим характеристикам относят габариты, массу, удобство монтажа и обслуживания, взрывобезопасность, устойчивость к механическим, тепловым, электрическим и другим перегрузкам, надежность, стоимость изготовления и эксплуатации и т. п.

В зависимости от вида выходного сигнала все измерительные преобразователи делят на параметрические и генераторные. Их классифицируют также по принципу действия. Ниже рассматриваются только измерительные преобразователи, получившие наибольшее применение.

13.1 Параметрические измерительные преобразователи

Общие сведения. В параметрических преобразователях выходной величиной является параметр электрической цепи (R, L, М, С). При использовании параметрических преобразователей необходим дополнительный источник питания, энергия которого используется для образования выходного сигнала преобразователя.

Реостатные преобразователи. Реостатные преобразователи основаны на изменении электрического сопротивления проводника под влиянием входной величины - перемещения. Реостатный преобразователь представляет собой реостат, щетка (подвижный контакт) которого перемещается под воздействием измеряемой неэлектрической величины. На рис. 11-5 схематически показаны некоторые варианты конструкций реостатных преобразователей для углового (рис. 11-5, а) и линейного (рис. 11-5, б и в) перемещений. Преобразователь состоит из обмотки, нанесенной на каркас, и щетки. Для изготовления каркасов применяются диэлектрики и металлы. Проволоку для обмотки выполняют из сплавов (сплав платины с иридием, константан, нихром и фехраль). Для обмотки обычно используют изолированный провод. После изготовления обмотки изоляцию провода счищают в местах соприкосновения его со щеткой. Щетку преобразователя выполняют либо из проволок, либо из плоских пружинящих полосок, причем ис пользуют как чистые металлы (платина, серебро), так и сплавы (платина с иридием, фосфористая бронза и т. д.).

Рис. 11-5. Реостатные преобразователи для угловых (а), линейных (б) перемещений и для функционального преобразования линейных перемещений (в)

Габариты преобразователя определяются значением измеряемого перемещения, сопротивлением обмотки и мощностью, выделяемой в обмотке.

Для получения нелинейной функции преобразования применяют функциональные реостатные преобразователи. Нужный характер преобразования часто достигается профилированием каркаса преобразователя (рис. 11-5, в).


В рассматриваемых реостатных преобразователях статическая характеристика преобразования имеет ступенчатый характер, так как сопротивление изменяется скачками, равными сопротивлению одного витка, что вызывает погрешность. Иногда применяют реохордные преобразователи, в которых щетка скользит вдоль оси проволоки. У этих преобразователей отсутствует указанная погрешность. Реостатные преобразователи включают в измерительные цепи в виде равновесных и неравновесных мостов, делителей напряжения и т. п.

К достоинствам преобразователей относится возможность получения высокой точности преобразования, значительных по уровню выходных сигналов и относительная простота конструкции. Недостатки - наличие скользящего контакта, необходимость относительно больших его перемещений, а иногда и значительного усилия для перемещения.

Применяют реостатные преобразователи для преобразования сравнительно больших перемещений и других неэлектрических величин (усилия, давления и т. п.), которые могут быть преобразованы в перемещение.

Тензочувствительные преобразователи (тензорезисторы). В основу работы преобразователей положен тензоэффект, заключающийся в изменении активного сопротивления проводника (полупроводника) под действием вызываемого в нем механического напряжения и деформации.

Рис. 11-6. Тензочувствительный проволочный преобразователь

Если проволоку подвергнуть механическому воздействию, например растяжению, то сопротивление ее изменится. Изменение сопротивления проволоки при механическом воздействии на нее объясняется изменением геометрических размеров (длины, диаметра) и удельного сопротивления материала.

Тензочувствительные преобразователи, широко применяемые в настоящее время (рис. 11-6), представляют собой тонкую зигзагообразно уложенную и приклеенную к полоске бумаги (подложке /) проволоку 2 (проволочную решетку). Преобразователь включают в цепь с помощью привариваемых или припаиваемых выводов 3. Преобразователь наклеивают на поверхность исследуемой детали так, чтобы направление ожидаемой деформации совпадало с продольной осью проволочной решетки.

Для изготовления преобразователей применяют главным образом константановую проволоку диаметром 0,02-0,05 мм (S = = 1,9 - 2,1). Константан обладает малым температурным коэффициентом электрического сопротивления, что очень важно, так как изменение сопротивления преобразователей при деформациях, например, стальных деталей соизмеримо с изменением сопротивления преобразователя при изменении температуры. В качестве подложки используют тонкую (0,03-0,05 мм) бумагу, а также пленку лака или клея, а при высоких температурах - слой цемента.

Применяют также фольговые преобразователи, у которых вместо проволоки используется фольга и пленочные тензорезисторы, получаемые путем возгонки тензочувствительного материала с последующим осаждением его на подложку.

Для наклеивания проволоки на подложку и всего преобразователя на деталь применяют клеи (раствор целлулоида в ацетоне, клей БФ-2, БФ-4, бакелитовый и т. д.). Для высоких температур (выше 200 °С) используют жаростойкие цементы, кремнийорганические лаки и клеи и т. п.

Преобразователи выполняют различных размеров в зависимости от назначения. Наиболее часто используют преобразовате ли с длиной решетки (базой) от 5 до 50 мм, имеющие сопротивление 30-500 Ом.

Изменение температуры вызывает изменение характеристики преобразования тензорезисторов, что объясняется температурной зависимостью сопротивления преобразователя и различием температурных коэффициентов линейного расширения материала тензорезистора и исследуемой детали. Влияние температуры устраняется обычно путем применения соответствующих методов температурной компенсации.

Наклеенный тензочувствительный преобразователь невозможно снять с одной детали и наклеить на другую. Поэтому для определения характеристик преобразования (коэффициента S) прибегают к выборочной градуировке преобразователей, что дает значение коэффициента S с погрешностью ±1 %. Методы определения характеристик тензорезисторов регламентированы стандартом. Достоинства этих преобразователей - линейность статической характеристики преобразования, малые габариты и масса, простота конструкции. Недостатком их является малая чувствительность.

В тех случаях когда требуется высокая чувствительность, находят применение тензочувствительные преобразователи, выполненные в виде полосок из полупроводникового материала. Коэффициент S у таких преобразователей достигает нескольких сотен. Однако воспроизводимость характеристик полупроводниковых преобразователей плохая. В настоящее время серийно выпускают интегральные полупроводниковые тензорезисторы, образующие мост или полумост с элементами термокомпенсации.

В качестве измерительных цепей для тензорезисторов используют равновесные и неравновесные мосты. Тензорезисторы применяют для измерения деформаций и других неэлектрических величин: усилий, давлений, моментов и т. п.

Термочувствительные преобразователи (терморезисторы). Принцип действия преобразователей основан на зависимости электрического сопротивления проводников или пвлупроводников от температуры.

Между терморезистором и исследуемой средой в процессе измерения происходит теплообмен. Так как терморезистор при этом включен в электрическую цепь, с помощью которой производят измерение его сопротивления, то по нему протекает ток, выделяющий в нем теплоту. Теплообмен терморезистора со средой происходит из-за теплопроводности среды и конвекции в ней, теплопроводности самого терморезистора и арматуры, к которой он крепится, и, наконец, из-за излучения. Интенсивность теплообмена, а следовательно, и температура терморезистора зависят от его геометрических размеров и формы, от конструкции защитной арматуры, от состава, плотности, теплопроводности, вязкости и других физических свойств газовой или жидкой среды, окружающей терморезистор, а также от температуры и скорости перемещения среды.

Рис. 11-7. Устройство (а) и внешний вид арматуры (б) платинового терморезистора

Таким образом, зависимость температуры, а следовательно, и сопротивления терморезистора от перечисленных выше факторов может быть использована для измерения различных неэлектрических величин, характеризующих газовую или жидкую среду. При конструировании преобразователя стремятся к тому, чтобы теплообмен терморезистора со средой в основном определялся измеряемой неэлектрической величиной.

По режиму работы терморезисторы бывают перегревные и без преднамеренного перегрева. В преобразователях без перегрева ток, проходящий через терморезистор, практически не вызывает перегрева, и температуру последнего определяет температура среды; эти преобразователи применяют для измерения температуры. В перегревных преобразователях электрический ток вызывает перегрев, зависящий от свойств среды. Перегревные преобразователи используют для измерения скорости, плотности, состава среды и т. д. Так как на перегревные терморезисторы влияет температура среды, обычно применяют схемные методы компенсации этого влияния.

Для измерения температуры наиболее распространены терморезисторы, выполненные из платиновой или медной проволоки.

Стандартные платиновые терморезисторы применяют для измерения температуры в диапазоне от -260 до + 1100°С, медные - в диапазоне от - 200 до +200 °С (ГОСТ 6651- 78). Низ котемпературные платиновые терморезисторы (ГОСТ 12877-76) применяют для измерения температуры в пределах от -261 до - 183 °С.

На рис. 11-7, а показано устройство платинового терморезистора. В каналах керамической трубки 2 расположены две (или четыре) секции спирали 3 из платиновой проволоки, соединенные между собой последовательно. К концам спирали припаивают выводы 4, используемые для включения терморезистора в измерительную цепь. Крепление выводов и герметизацию керамической трубки производят глазурью /. Каналы трубки засыпают порошком безводного оксида алюминия, выполняющим роль изолятора и фиксатора спирали. Порошок безводного оксида алюминия, имеющий высокую теплопроводность и малую теплоемкость, обеспечивает хорошую передачу теплоты и малую инерционность терморезистора. Для защиты терморезистора от механических и химических воздействий внешней среды его помещают в защитную арматуру (рис. 11-7, б) из нержавеющей стали.

Начальные сопротивления (при О °С) платиновых стандартных терморезисторов равны 1, 5, 10, 46, 50, 100 и 500 Ом, медных - 10, 50, 53 и 100 Ом.

Допустимое значение тока, протекающего по терморезистору при включении его в измерительную цепь, должно быть таким, чтобы изменение сопротивления терморезистора при нагреве не превышало 0,1 % начального сопротивления.

Статические характеристики преобразования в виде таблиц (градуировочных) и допускаемые отклонения этих характеристик для стандартных терморезисторов приведены в ГОСТ 6651-78.

Помимо платины и меди, иногда для изготовления терморезисторов используют никель.

Для измерения температуры применяют также полупроводниковые терморезисторы (термисторы) различных типов, которые характеризуются большей чувствительностью (ТКС терми-

сторов отрицательный и при 20 °С в 10-15 раз превышает ТКС меди и платины) и имеют более высокие сопротивления (до 1 МОм) при весьма малых размерах. Недостаток термисторов - плохая воспроизводимость и нелинейность характеристики преобразования:

где rt и Ro - сопротивления термистора при температурах Т и То; То - начальная температура рабочего диапазона; В - коэффициент.

Термисторы используют в диапазоне температур от -60 до + 120°С.

Для измерения температуры от -80 до -f- 150 °С применяют термодиоды и термотранзисторы, у которых под действием температуры изменяется сопротивление р - я-перехода и падение напряжения на этом переходе. Чувствительность термотранзистора по напряжению 1,5-2,0 мВ/К, что значительно превышает чувствительность стандартных термопар (см. табл. 11-1). Эти преобразователи обычно включают в мостовые цепи и цепи в виде делителей напряжения.

Достоинствами термодиодов и термотранзисторов являются высокая чувствительность, малые размеры и малая инерционность, высокая надежность и дешевизна; недостатками - узкий температурный диапазон и плохая воспроизводимость статической характеристики преобразования. Влияние последнего недостатка уменьшают применением специальных цепей.

Тепловую инерционность стандартных терморезисторов согласно ГОСТ 6651-78 характеризуют показателем тепловой инерции в^, определяемым как время, необходимое для того, чтобы при внесении преобразователя в среду с постоянной температурой разность температур среды и любой точки внесенного в нее преобразователя стала равной 0,37 того значения, которое она имела в момент наступления регулярного теплового режима. Показатель тепловой инерции определяют по той части кривой переходного теплового процесса преобразователя, которая соответствует регулярному режиму, т. е. имеет экспоненциальный характер (в полулогарифмическом масштабе - прямая линия). Значение е^ для различных типов стандартных преобразователей находится в пределах от нескольких десятков секунд до нескольких минут.

Когда необходимы малоинерционные терморезисторы, для их изготовления используют очень тонкий провод (микропровод) или применяют термисторы малого объема (бусинковые) или термотранзисторы.

Рис. 11-8. Преобразователь газоанализатора, основанный на принципе измерения теплопроводности

Рс. 11-9. Зависимость теплопроводности газа от давления

Терморезисторы применяют в приборах для анализа газовых смесей. Многие газовые смеси отличаются друг от друга и от воздуха теплопроводностью.

В приборах для газового анализа - газоанализаторах - для измерения теплопроводности используют перегревный платиновый терморезистор (рис. 11-8), помещенный в камеру 2 с анализируемым газом. Конструкция терморезистора, арматуры и камеры, а также значение нагревающего тока выбирают такими, чтобы теплообмен со средой осуществлялся в основном за счет теплопроводности газовой среды.

Для исключения влияния внешней температуры, кроме рабочей, используют компенсационную камеру с терморезистсром, заполненную постоянным по составу газом. Обе камеры выполняют в виде единого блока, что обеспечивает камерам одинаковые температурные условия. Рабочий и компенсационный терморезисторы при измерениях включают в соседние плечи моста, что приводит к компенсации влияния температуры.

Терморезисторы применяют в приборах для измерения степени разреженности. На рис. 11-9 показана зависимость теплопроводности газа, находящегося между телами А и Б, от его давления.

Таким образом, теплопроводность газа становится зависимой от числа молекул в единице объема, т. е. от давления (степени разреженности). Зависимость теплопроводности газа от давления используют в вакуумметрах - приборах для измерения степени разреженности.

Для измерения теплопроводности в вакуумметрах используют металлические (платиновые) и полупроводниковые терморезисторы, помещаемые в стеклянный или металлический баллон, который соединяют с контролируемой средой.

Терморезисторы применяют в приборах для измерения скорости газового потока - термоанемометрах. Установившаяся температура перегревного терморезистора, помещенного на пути газового потока, зависит от скорости потока. В этом случае основным путем теплообмена терморезистора со средой будет конвекция (принудительная). Изменение сопротивления терморезистора вследствие уноса теплоты с его поверхности движущейся средой функционально связано со скоростью среды.

Конструкцию и тип терморезистора, арматуру и нагревающий терморезистор ток выбирают такими, чтобы были снижены или исключены все пути теплообмена, кроме конвективного.

Достоинствами термоанемометров являются высокая чувствительность и быстродействие. Эти приборы позволяют измерять скорости от 1 до 100-200 м/с при использовании измерительной цепи, с помощью которой температура терморезистора автоматически поддерживается почти неизменной.

Электролитические преобразователи. Электролитические преобразователи основаны на зависимости электрического сопротивления раствора электролита от его концентрации. В основном их применяют для измерения концентраций растворов.

На рис. 11-10 для примера показаны графики зависимостей удельной электрической проводимости у некоторых растворов электролитов от концентрации с растворенного вещества. Из этого рисунка следует, что в определенном диапазоне изменения концентрации зависимость электрической проводимости от кон центрации однозначна и может быть использована для определения с.

Рис. 11-10. Зависимость удельной электрической проводимости растворов электролитов от концентрации растворенного вещества

Рис. 11-11. Лабораторный электролитический преобразователь

Преобразователь, применяемый в лабораторных условиях для измерения концентрации, представляет собой сосуд с двумя электродами (электролитическая ячейка) (рис. 11-11). Для промышленных непрерывных измерений преобразователи выполняют проточными, причем часто используют конструкции, в которых роль второго электрода играют стенки сосуда (металлические).

Электрическая проводимость растворов зависит от температуры. Таким образом, при использовании электролитических преобразователей необходимо устранять влияние температуры. Эту задачу решают путем стабилизации температуры раствора с помощью холодильника (нагревателя) или применения цепей температурной компенсации с медными терморезисторами, так как температурные коэффициенты проводимости меди и растворов электролитов имеют противоположные знаки.

При прохождении постоянного тока через преобразователь происходит электролиз раствора, что приводит к искажению результатов измерения. Поэтому измерения сопротивления раствора обычно проводят на переменном токе (700-1000 Гц), чаще всего с помощью мостовых цепей.

Индуктивные преобразователи. Принцип действия преобразователей основан на зависимости индуктивности или взаимной индуктивности обмоток на магнитопроводе от положения, геометрических размеров и магнитного состояния элементов их магнитной цепи.

Рис. 11-12. Магнитопровод с зазорами и двумя обмотками

Индуктивность и взаимную индуктивность можно изменять, воздействуя на длину б, сечение воздушного участка магнитопровода s, на потери мощности в магнитопроводе и другими путями. Этого можно достичь, например, перемещением подвижного сердечника (якоря) / (рис. 11-12) относительно неподвижного 2, введением немагнитной металлической пластины 3 в воздушный зазор и т. п.

На рис. 11-13 схематически показаны различные типы индуктивных преобразователей. Индуктивный преобразователь (рис. 11-13, а) с переменной длиной воздушного зазора б характеризуется нелинейной зависимостью L = f (б). Такой преобразователь обычно применяют при перемещениях якоря на 0,01-5 мм. Значительно меньшей чувствительностью, но линейной зависимостью L = f (s) отличаются преобразователи с переменным сечением воздушного зазора (рис. 11-13, б). Эти преобразователи используют при перемещениях до 10-15 мм.

Рис. 11-13. Индуктивные преобразователи с изменяющейся длиной зазора (а), с изменяющимся сечением зазора (б), дифференциальный (в), дифференциальный трансформаторный (г), дифференциальный трансформаторный с разомкнутой магнитной цепью (д) магнитоупругий (е)

Якорь в индуктивном преобразователе испытывает усилие (нежелательное) притяжения со стороны электромагнита

где W m - энергия магнитного поля; L - индуктивность преобразователя; / - ток, проходящий через обмотку преобразователя.

Широко распространены индуктивные дифференциальные преобразователи (рис. 11-13, в), в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов. Дифференциальные преобразователи в сочетании с соответствующей измерительной цепью (обычно мостовой) имеют более высокую чувствительность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов и сниженное результирующее усилие на якорь со стороны электромагнита, чем недифференциальные преобразователи.

На рис. 11-13, г показана схема включения дифференциального индуктивного преобразователя, у которого выходными величинами являются взаимные индуктивности. Такие преобразователи называют взаимно-индуктивными или трансформаторными. При питании первичной обмотки переменным током и при симмет-ричнорл положении якоря относительно электромагнитов ЭДС на выходных зажимах равна нулю. При перемещении якоря на выходных зажимах появляется ЭДС.

Для преобразования сравнительно больших перемещений (до 50-100 мм) применяют трансформаторные преобразователи с незамкнутой магнитной цепью (рис. 11-13, о).

Применяют трансформаторные преобразователи угла поворота, состоящие из неподвижного статора и подвижного ротора с обмотками. Обмотку статора питают переменным током. Поворот ротора вызывает изменение значения и фазы наводимой в его обмотке ЭДС. Такие преобразователи используют при измерении больших угловых перемещений.

Для измерения малых угловых перемещений используют индуктосины (рис. 11-14). Ротор / и статор 2 индуктосина снабжают печатными обмотками 3, имеющими вид радиального растра. Принцип действия индуктосина аналогичен описанному выше. Нанесением обмоток печатным способом удается получить большое число полюсных шагов обмотки, что обеспечивает высокую чувствительность преобразователя к изменению угла поворота.

Рис. 11-14. Устройство (а) и вид печатной обмотки (б) индуктосина

Если ферромагнитный сердечник преобразователя подвергать механическому воздействию F, то вследствие изменения магнитной проницаемости материала сердечника изменится магнитное сопротивление цепи, что повлечет за собой изменение индуктивности L и взаимной индуктивности М обмоток. На этом принципе основаны магнитоупругие преобразователи (рис. 11-13, е).

Конструкция преобразователя определяется диапазоном измеряемого перемещения. Габариты преобразователя выбирают исходя из необходимой мощности выходного сигнала.

Для измерения выходного параметра индуктивных преобразователей наибольшее применение получили мостовые (равновесные и неравновесные) цепи, а также компенсационная (в автоматических приборах) цепь для дифференциальных трансформаторных преобразователей.

Индуктивные преобразователи используют для преобразования перемещения и других неэлектрических величин, которыемогут быть преобразованы в перемещение (усилие, давление, момент и т. д.).

По сравнению с другими преобразователями перемещения индуктивные преобразователи отличаются значительными по мощности выходными сигналами, простотой и надежностью в работе.

Недостаток их - обратное воздействие преобразователя на исследуемый объект (воздействие электромагнита на якорь) и влияние инерции якоря на частотные характеристики прибора.

Рис. 11-15. Емкостные преобразователи с изменяющимся расстоянием между пластинами (а), дифференциальный (б), дифференциальный с переменной активной площадью пластин (в) и с изменяющейся диэлектрической проницаемостью среды между пластинами (г)

Емкостные преобразователи. Емкостные преобразователи основаны на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.

На рис. 11-15 схематически показано устройство различных емкостных преобразователей. Преобразователь на рис. 11-15, а представляет собой конденсатор, одна пластина которого перемещается под действием измеряемой величины х относительно неподвижной пластины. Статическая характеристика преобразования С (б) нелинейна. Чувствительность преобразователя возрастает с уменьшением расстояния 6. Такие преобразователи используют для измерения малых перемещений (менее 1 мм).

Малое рабочее перемещение пластин приводит к погрешности от изменения расстояния между пластинами при колебаниях температуры. Выбором размеров деталей преобразователя и материалов добиваются снижения этой погрешности.

В емкостных преобразователях возникает усилие (нежелательное) притяжения между пластинами

где W 3 - энергия электрического поля; U и С - соответственно напряжение и емкость между пластинами.

Применяют также дифференциальные преобразователи (рис. 11-15, б), у которых имеется одна подвижная и две неподвижные пластины. При воздействии измеряемой величины х у этих преобразователей одновременно изменяются емкости. На рис. 11-15, в показан дифференциальный емкостной преобразователь с переменной активной площадью пластин. Такой преобразователь используют для измерения сравнительно больших линейных (более 1 мм) и угловых перемещений. В этих преобразователях легко получить требуемую характеристику преобразования путем профилирования пластин.

Преобразователи (e) применяют для измерения уровня жидкостей, влажности веществ, толщины изделий из диэлектриков и т. п. Для примера (рис. 11-15, г) дано устройство преобразователя емкостного уровнемера. Емкость между электродами, опущенными в сосуд, зависит от уровня жидкости, так как изменение уровня ведет к изменению средней диэлектрической проницаемости среды между электродами. Изменением конфигурации пластин можно получить желаемый характер зависимости показаний прибора от объема (массы) жидкости.

Для измерения выходного параметра емкостных преобразователей применяют мостовые цепи и цепи с использованием резонансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, способные реагировать на перемещения порядка 10~ 7 мм. Цепи с емкостными преобразователями обычно питают током повышенной частоты (до десятков мегагерц), что вызвано желанием увеличить сигнал, попадающий в измерительный прибор, и необходимостью уменьшить шунтирующее действие сопротивления изоляции.

Ионизационные преобразователи. Преобразователи основаны на явлении ионизации газа или люминесценции некоторых веществ под действием ионизирующего излучения.

Если камеру, содержащую газ, подвергнуть облучению, например, р-лучами, то между электродами, включенными в электрическую цепь (рис. 11-16), потечет ток. Этот ток зависит от приложенного к электродам напряжения, от плотности и состава газовой среды, размера камеры и электродов, свойств и интенсивности ионизирующего излучения и т. д. Эти зависимости используют для измерения различных неэлектрических величин: плотности и состава газовой среды, геометрических размеров деталей и т. д.

Рис. 11-16. Схема ионизационного преобразователя

Рис. 11-17. Вольт-амперная характеристика ионизационного преобразователя

В качестве ионизирующих агентов применяют а-, р- и у-лучи радиоактивных веществ, значительно реже - рентгеновские лучи и нейтронное излучение.

Для измерения степени ионизации используют преобразователи - ионизационные камеры и ионизационные счетчики, действие которых соответствует различным участкам вольт-амперной характеристики газового промежутка между двумя электродами. На рис. 11-17 показана зависимость тока в камере (рис. 11-16) с постоянным составом газа от приложенного напряжения U и интенсивности излучения. На участке А характеристики ток увеличивается прямо пропорционально напряжению, затем рост его замедляется и на участке Б достигает насыщения. Это указывает на то, что все ионы, образующиеся в камере, достигают электродов. На участке В ионизационный ток снова начинает расти, что вызывается вторичной ионизацией при ударениях первичных электронов и ионов о нейтральные молекулы. При дальнейшем увеличении напряжения (участок Г) ионизационный ток перестает зависеть от первоначальной ионизации и наступает

непрерывный разряд (участок Д), который уже не зависит от воздействия радиоактивного излучения.

Участки А и Б вольт-амперной характеристики описывают действие ионизационных камер, а участки В и Г - ионизационных счетчиков. Кроме ионизационных камер и счетчиков, в качестве ионизационных преобразователей применяют сцинтилляционные (люминесцентные) счетчики. Принцип действия этих счетчиков основан на возникновении в некоторых веществах- фосфорах (активированные серебром сернистый цинк, сернистый кадмий и др.) - под действием радиоактивных излучений световых вспышек (сцинтилляций), которые в счетчиках регистрируются фотоумножителями. Яркость этих вспышек, а следовательно, и ток фотоумножителя определяются радиоактивным излучением.

Выбор типа ионизационного преобразователя зависит в значительной мере от ионизирующего излучения.

Альфа-лучи (ядра атома гелия) обладают большой ионизирующей способностью, но имеют малую проникающую способность. В твердых телах а-лучи поглощаются в очень тонких слоях (единицы-десятки микрометров). Поэтому при использовании а-лучей а-излучатель помещают внутрь преобразователя.

Бета-лучи представляют собой поток электронов (позитронов); они обладают значительно меньшей ионизирующей способностью, чем а-лучи, но зато имеют более высокую проникающую способность. Длина пробега в твердых телах достигает нескольких миллиметров. Поэтому излучатель может располагаться как внутри, так и вне преобразователя.

Изменение расстояния между электродами, площади перекрытия электродов или положения источника радиоактивного излучения относительно ионизационных камер или счетчиков сказывается на значении ионизационного тока. Поэтому указанные зависимости используют для измерения различных механических и геометрических величин.

На рис. 11-18 в качестве примера показан ионизационный мембранный манометр, где / -излучатель; 2 - мембрана; 3 - неподвижный электрод, изолированный от мембраны. Между электродами 2 а 3 приложена разность потенциалов, достаточная для достижения тока насыщения. При изменении давления р мембрана прогибается, изменяя расстояние между электродами и значение ионизационного тока.

Рис. 11-18. Ионизационный мембранный манометр

Рис. 11-19. Газоразрядный счетчик

Гамма-лучи - электромагнитные колебания весьма малой длины волны (10~ 8 -10~" см), возникающие при радиоактивных превращениях. Гамма-лучи обладают большой проникающей способностью.

Конструкции ионизационных камер и счетчиков разнообразны и зависят от вида излучения.

Для регистрации отдельных частиц, а также измерения небольших у-излучений широко применяют так называемые газоразрядные счетчики, действие которых описывают участки В и Г вольт-амперной характеристики. Устройство газоразрядного счетчика показано на рис. 11-19. Счетчик состоит из металлического цилиндра /, внутри которого натянута тонкая вольфрамовая проволока 2. Оба эти электрода помещены в стеклянный цилиндр 3 с инертным газом. При ионизации газа в цепи счетчика появляются импульсы тока, число которых подсчитывается.

В качестве источников а-, р- и у-излучений обычно используют радиоактивные изотопы. Источники излучения, применяемые в измерительной технике, должны иметь значительный период полураспада и достаточную энергию излучения (кобальт-60, стронций-90, плутоний-239 и др.).

Основное достоинство приборов, использующих ионизирующие излучения, заключается в возможности бесконтактных измерений, что имеет большое значение, например, при измерениях в агрессивных или взрывоопасных средах, а также в средах, находящихся под большим давлением или имеющих высокую температуру. Основной недостаток этих приборов - необходимость применения биологической защиты при высокой активности источника излучения.

13.2 Генераторные измерительные преобразователи

Общие сведения. В генераторных преобразователях выходной величиной являются ЭДС или заряд, функционально связанные с измеряемой неэлектрической величиной.

Термоэлектрические преобразователи. Эти преобразователи основаны на термоэлектрическом эффекте, возникающем в цепи термопары.

При разности температур точек / и 2 соединения двух разнородных проводников А и В (рис. 11-20, а), образующих термопару, в цепи термопары возникает термо-ЭДС.

Для измерения термо-ЭДС электроизмерительный прибор (милливольтметр, компенсатор) включают в цепь термопары (рис. 11-20, б). Точку соединения проводников (электродов) называют рабочим концом термопары, точки 2 и 2" - свободными концами.

Чтобы термо-ЭДС в цепи термопары однозначно определялась температурой рабочего конца, необходимо температуру свободных концов термопары поддерживать одинаковой и неизменной.

Рис. 11-20. Термопара (а) и способ включения прибора в цепь термопары (б)

Градуировку термоэлектрических термометров - приборов, использующих термопары для измерения температуры, производят обычно при температуре свободных концов О °С. Градуировочные таблицы для стандартных термопар также составлены при условии равенства температуры свободных концов О °С. При практическом применении термоэлектрических термометров температура свободных концов термопары обычно не равна О °С и поэтому необходимо вводить поправку.

Для изготовления термопар, применяемых в настоящее время для измерения температуры, используют в основном специальные сплавы.

Для измерения высоких температур используют термопары типов ТПП, ТПР и ТВР. Термопары из благородных металлов (ТПП и ТПР) применяют при измерениях с повышенной точностью. В остальных случаях применяют термопары из неблагородных металлов (ТХА, ТХК).

Для защиты от внешних воздействий (давления, агрессивных газов и т. д.) электроды термопар помещают в защитную арматуру, конструктивно похожую на арматуру терморезисторов (рис. 11-7, б).

Для удобства стабилизации температуры свободных концов иногда термопару удлиняют с помощью так называемых удлинительных проводов, выполненных либо из соответствующих термоэлектродных материалов, либо из специально подобранных материалов, более дешевых, чем электродные, и удовлетворяющих условию термоэлектрической идентичности с основной термопарой в диапазоне возможных температур свободных концов (обычно от О до 100 °С). Иначе говоря, удлинительные провода должны иметь в указанном интервале температур такую же зависимость термо-ЭДС от температуры, как и у основной термопары.

Инерционность термопар характеризуют показателем тепловой инерции. Известны конструкции малоинерционных термопар, у которых показатель тепловой инерции составляет 5-20 с. Термопары в обычной арматуре имеют показатель тепловой инерции, равный нескольким минутам.

Индукционные преобразователи применяют для измерения скорости линейных и угловых перемещений. Выходной сигнал этих преобразователей может быть проинтегрирован или продифференцирован во времени с помощью электрических интегрирующих или дифференцируюш,их устройств. После этих преобразований информативный параметр сигнала становится пропорциональным, соответственно, перемещению или ускорению. Поэтому индукционные преобразователи используют также для измерения линейных и угловых перемещений и ускорений.

Наибольшее применение индукционные преобразователи получили в приборах для измерения угловой скорости (тахометрах) и в приборах для измерения параметров вибраций.

Индукционные преобразователи для тахометров представляют собой небольшие (1 -100 Вт) генераторы постоянного или переменного тока обычно с независимым возбуждением от постоянного магнита, ротор которых механически связан с испытуемым валом. При использовании генератора постоянного тока об угловой скорости судят по ЭДС генератора, а в случае применения генератора переменного тока угловую скорость можно определить по значению ЭДС или ее частоте.

На рис. 11-21 показан индукционный преобразователь для измерения амплитуды, скорости и ускорения возвратно-поступательного движения. Преобразователь представляет собой цилиндрическую катушку /, перемещающуюся в кольцевом зазоре магнитопровода 2. Цилиндрический постоянный магнит 3 создает в кольцевом зазоре постоянное радиальное магнитное поле. Катушка при перемещении пересекает силовые линии магнитного поля, и в ней возникает ЭДС, пропорциональная скорости перемещения.

Рис. 11-21. Индукционный преобразователь

Погрешности индукционных преобразователей определяются главным образом изменением магнитного поля во времени и при изменении температуры, а также температурными изменениями сопротивления обмотки.

Основные достоинства индукционных преобразователи заключаются в сравнительной простоте конструкции, надежности работы и высокой чувствительности. Недостаток - ограниченный частотный диапазон измеряемых величин.

Пьезоэлектрические преобразователи. Такие преобразователи основаны на использовании прямого пьезоэлектрического эффекта, заключающегося в появлении электрических зарядов на поверхности некоторых кристаллов (кварца, турмалина, сегнето-вой соли и др.) под влиянием механических напряжений.

Из кристалла кварца вырезается пластинка, грани которой должны быть перпендикулярны оптической оси Oz, механической оси Оу и электрической оси Ох кристалла (рис. 11-22, а и б).

F x вдоль электрической оси на гранях х появляются заряды Q x = kF x , где k - пьезоэлектрический коэффициент (модуль).

При воздействии на пластину усилия F y вдоль механической оси на тех же гранях х возникают заряды Q y = kF y a/b, где а и b - размеры граней пластины.

Механическое воздействие на пластину вдоль оптической оси не вызывает появления зарядов.

Устройство пьезоэлектрического преобразователя для измерения переменного давления газа показано на рис. 11-23. Давление р через металлическую мембрану / передается на зажатые между металлическими прокладками 2 кварцевые пластинки 3.

Рис. 11-22. Кристалл кварца (а) и пластинка (б), вырезанная из него

Шарик 4 способствует равномерному распределению давления по поверхности кварцевых пластинок. Средняя прокладка соединена с выводом 5, проходящим через втулку из хорошего изоляционного материала. При воздействии давления р между выводом 5 и корпусом преобразователя возникает разность потенциалов.

В пьезоэлектрических преобразователях главным образом применяют кварц, у которого пьезоэлектрические свойства сочетаются с высокой механической прочностью и высокими изоляционными качествами, а также с независимостью пьезоэлектрической характеристики от температуры в широких пределах. Используют также поляризованную керамику из титаната бария, титаната и цирконата свинца.

Рис. 11-23. Пьезоэлектрический преобразователь для измерения давления

Размеры пластин и их число выбирают исходя из конструктивных соображений и требуемого значения заряда.

Заряд, возникающий в пьезоэлектрическом преобразователе, «стекает» по изоляции и входной цепи измерительного прибора. Поэтому приборы, измеряющие разность потенциалов на пьезоэлектрических преобразователях, должны иметь высокое входное сопротивление (10 12 -10 15 Ом), что практически обеспечивается применением электронных усилителей с высоким входным сопротивлением.

Из-за «стекания» заряда эти преобразователи используют для измерения только быстро изменяющихся величин (переменных усилий, давлений, параметров вибраций, ускорений и т. д.).

Находят применение пьезоэлектрические преобразователи - пьезорезонаторы, в которых используются одновременно прямой и обратный пьезоэффекты. Последний заключается в том, что если на электроды преобразователя подать переменное напряжение, то в пьезочувствительной пластине возникнут механические колебания, частота которых (резонансная частота) зависит от толщины h пластины, модуля упругости Е и плотности р ее материала. При включении такого преобразователя в резонансный контур генератора частота генерируемых электрических колебаний определяется частотой f p . При изменении значений h, Е или р под влиянием механических или температурных воздействий частота /р изменится и, соответственно, изменится частота генерируемых колебаний. Этот принцип используют для преобразования давления, усилия, температуры и других величин в частоту.

Гальванические преобразователи. Преобразователи основаны на зависимости ЭДС гальванической цепи от химической активности ионов электролита, т. е. от концентрации ионов и окислительно-восстановительных процессов в электролите. Эти преобразователи применяют для определения реакции раствора (кислая, нейтральная, щелочная), которая зависит от активности водородных ионов раствора.

Дистиллированная вода имеет слабую, но вполне определенную электрическую проводимость, что объясняется ионизацией воды Химическая активность а равна произведению эквивалентной концентрации на коэффициент активности (стремящийся к единице при бесконечном разбавлении раствора).

Если в воде растворить кислоту, образующую при диссоциации ионы Н + , то концентрация ионов Н + в растворе станет больше, чем в чистой воде, а концентрация ионов ОН~ меньше за счет воссоединения части ионов Н + с ионами ОН.

Таким образом, химическая активность водородных ионов раствора является характеристикой реакции раствора. Реакцию раствора численно характеризуют отрицательным логарифмом активности ионов водорода - водородным показателем рН Для дистиллированной воды водородный показатель равен 7 единицам рН.

Диапазон изменения водородного показателя водных растворов при t = 22 °С составляет 0-14 единиц рН.

Для измерения рН применяют метод, основанный на измерении электродного (пограничного) потенциала.

Если металлический электрод погрузить в раствор, содержащий его одноименные ионы, то электрод приобретает потенциал. Аналогично ведет себя и водородный электрод.

Для получения электродного потенциала между водородом и раствором, необходимо иметь так называемый водородный электрод. Водородный электрод можно создать, воспользовавшись свойством водорода адсорбироваться на поверхности платины, иридия и палладия. Обычно водородным электродом служит покрытый платиновой чернью платиновый электрод, к которому непрерывно подводится газообразный водород. Потенциал такого электрода зависит от концентрации водородных ионов в растворе.

Практически измерить абсолютное значение пограничного потенциала нельзя. Поэтому гальванический преобразователь всегда состоит из двух полуэлементов, электрически соединенных друг с другом: рабочего (измерительного) полуэлемента, представляющего собой исследуемый раствор с электродом, и сравнительного (вспомогательного) полуэлемента с неизменным пограничным потенциалом, состоящего из электрода и раствора с постоянной концентрацией. В качестве сравнительного полуэлемента используют водородный электрод с нормальной постоян ной концентрацией водородных ионов. При промышленных измерениях применяют более удобный сравнительный каломельный электрод.

Рис. 11-24. Гальванический преобразователь

На рис. 11-24 показан преобразователь для измерения концентрации водородных ионов. Сравнительным полуэлементом служит каломельный электрод. Он представляет собой стеклянный сосуд 4, на дно которого помещено небольшое количество ртути, а поверх нее - паста из каломели (Hg2Cb). Сверху пасты налит раствор хлористого калия (КС1). Потенциал возникает на границе каломель - ртуть. Для контакта со ртутью в дно сосуда впаян платиновый электрод 5. Потенциал каломельного электрода зависит от концентрации ртути в каломели, а концентрация ионов ртути, в свою очередь, зависит от концентрации ионов хлора в растворе хлористого калия.

В исследуемый раствор погружен водородный электрод. Оба полуэлемента соединены электролитическим ключом, представляющим собой трубку 2, обычно заполненную насыщенным раствором КС1 и закрытую полупроницаемыми пробками 3. ЭДС такого преобразователя является функцией рН.

В приборах промышленного типа вместо рабочих водородных электродов используются более удобные сурьмяные или хингидронные электроды. Широко применяют также так называемые стеклянные электроды.

Для измерения ЭДС гальванических преобразователей в основном используют компенсационные приборы. Для стеклянных электродов измерительная цепь должна иметь высокое входное сопротивление, так как внутреннее сопротивление стеклянных электродов достигает 100-200 МОм. При измерении рН с помощью гальванических преобразователей необходимо вносить поправки на влияние температуры.


Министерство образования Республики Беларусь

Учреждение образования

"Белорусский государственный университет

информатики и радиоэлектроники"

Кафедра метрологии и стандартизации

Параметрические измерительные преобразователи

Методические указания к лабораторной работе Э.5Б

для студентов специальности 54 01 01 ‑ 02

"Метрология, стандартизация и сертификация"

всех форм обучения

УДК 621.317.7 + 006.91 (075.8)

ББК 30.10я73

Составители В.Т. Ревин, Л.Е. Батай

Методические указания содержат цель работы, краткие сведения из теории, описание лабораторной установки, лабораторное задание и порядок выполнения работы, а также указания по оформлению отчета и контрольные вопросы для проверки знаний студентов. Рассмотрены основные виды параметрических измерительных преобразователей (реостатные, индуктивные и емкостные), их основные характеристики и схемы включения в измерительную цепь. Выполнение лабораторной работы предполагает определение основных метрологических характеристик (функция преобразования, чувствительность, основная погрешность, погрешность определения чувствительности) рассмотренных измерительных преобразователей, а также овладение методикой измерения неэлектрических величин с помощью измерительных преобразователей и нахождения погрешностей определения значений неэлектрических величин.

УДК 621.317.7 + 006.91 (075.8)

ББК 30.10 я 73

1 Цель работы

1.1 Изучение принципа действия, конструкции и основных характеристик реостатных, емкостных и индуктивных измерительных преобразователей неэлектрических величин в электрические.

1.2 Изучение методов измерения неэлектрических величин с помощью реостатных, емкостных и индуктивных измерительных преобразователей.

1.3 Практическое определение основных характеристик измерительных преобразователей и измерение с их помощью линейных и угловых перемещений.

2 Краткие сведения из теории

Особенностью современных измерений является необходимость определения значений множества физических величин, среди которых большую часть составляют неэлектрические величины. Для измерения неэлектрических величин широко используются электрические средства измерений, что обусловлено рядом их существенных достоинств. К ним относятся высокая точность измерения, высокие чувствительность и быстродействие средств измерений, возможность проведения дистанционных измерений, автоматического преобразования измерительной информации, автоматического управления процессом измерения и т.п. Особенностью электрических средств измерений, предназначенных для измерения неэлектрических величин, является обязательное наличие первичного измерительного преобразователя неэлектрической величины в электрическую.

Первичный измерительный преобразователь устанавливает однозначную функциональную связь между выходной электрической величиной Y и входной неэлектрической величиной Х: Y = f ( X ).

В зависимости от вида выходного сигнала первичные измерительные преобразователи подразделяются на параметрические и генераторные.

В параметрических измерительных преобразователях выходной величиной является параметр электрической цепи: сопротивление R, индуктивность L, взаимная индуктивность M или емкость C. При использовании параметрических измерительных преобразователей всегда необходим дополнительный источник питания, энергия которого используется для образования выходного сигнала преобразователя.

В генераторных измерительных преобразователях выходными величинами являются ЭДС, ток, напряжение, или заряд. При использовании генераторных измерительных преобразователей вспомогательные источники питания применяются только для усиления полученного сигнала.

По принципу действия параметрические измерительные преобразователи подразделяются на реостатные, тензочувствительные (тензорезисторы), термочувствительные (терморезисторы, термисторы), емкостные, индуктивные, ионизационные.

Зависимость выходной величины измерительного преобразователя Y от входной величины X, описываемая выражением Y = f (X ), называется функцией преобразования. Часто выходная величина преобразователя Y зависит не только от входной измеряемой величины X , но и от некоторого внешнего фактора Z . Поэтому в общем виде функцию преобразования можно представить функциональной зависимостью: Y = f (X , Z ).

При разработке измерительных преобразователей неэлектрических величин стремятся получить линейную функцию преобразования. Для описания линейной функции преобразования достаточно задать два параметра: начальное значение выходной величины Y 0 (нулевой уровень), соответствующее нулевому или иному начальному значению входной величины X, и параметр S, характеризующий наклон функции преобразования.

В этом случае функция преобразования может быть представлена в следующем виде:

Параметр S, характеризующий наклон функции преобразования, называется чувствительностью преобразователя. Чувствительность преобразователя  это отношение изменения выходной величины измерительного преобразователя ΔY к вызвавшему его изменению входной величины ΔX:

. (2)

Чувствительность преобразователя является величиной, имеющей размерность, причем размерность зависит от природы входной и выходной величин. Для реостатного преобразователя, например, чувствительность имеет размерность Ом/мм, для термоэлектрического преобразователя  мВ/К, для фотоэлемента  мкА/лм, для двигателя  об/(сВ) или Гц/В, для гальванометра  мм/мкА и т. д.

Важнейшей проблемой при проектировании и использовании измерительного преобразователя является обеспечение постоянства его чувствительности. Чувствительность должна как можно меньше зависеть от значений входной величины Х (в этом случае функция преобразования линейна), скорости изменения X, времени работы преобразователя, а также воздействия других физических величин, характеризующих не сам объект, а его окружение (такие величины называются влияющими). При нелинейной функции преобразования чувствительность зависит от значений входной величины: S = S (X ) .

Диапазон значений неэлектрических величин, преобразуемых с помощью измерительного преобразователя, ограничивается с одной стороны пределом преобразования, а с другой – порогом чувствительности.

Предел преобразования преобразователя – это максимальное значение входной величины, которое может быть воспринято преобразователем без его повреждения или искажения функции преобразования.

Порог чувствительности – это минимальное изменение значения входной величины, способное вызвать заметное изменение выходной величины преобразователя.

Соотношение Y = f (X) выражает в общей теоретической форме физические законы, положенные в основу работы преобразователей. На практике функция преобразования определяется экспериментально в численной форме в результате градуировки преобразователя. В этом случае для ряда точно известных значений X измеряют соответствующие значения Y, что позволяет построить градуировочную кривую (рисунок 1,а ). Используя построенную градуировочную кривую, по полученным в результате измерения значениям электрической величины Y можно найти соответствующие значения искомой неэлектрической величины X (рисунок 1,б ).

а – построение градуировочной кривой по измеренным значениям величин Х и Y;

б  использование градуировочной кривой для определения входной величины Х

Рисунок 1  Градуировочная характеристика измерительного преобразователя

Важнейшей характеристикой любого измерительного преобразователя является его основная погрешность , которая обусловлена принципом действия, несовершенством конструкции преобразователя или технологии его изготовления и проявляется при нормальных значениях влияющих величин или нахождении их в пределах области нормальных значений.

Основная погрешность измерительного преобразователя может иметь несколько составляющих, обусловленных:

Неточностью образцовых средств измерений, с помощью которых проводилось определение функции преобразования;

Отличием реальной градуировочной характеристики от номинальной функции преобразования; приближенным (табличным, графическим, аналитическим) выражением функции преобразования;

Неполным совпадением функции преобразования при возрастании и убывании измеряемой неэлектрической величины (гистерезис функции преобразования);

Неполной воспроизводимостью характеристик измерительного преобразователя (чаще всего чувствительности).

При градуировке серии однотипных преобразователей оказывается, что их характеристики несколько отличаются друг от друга, занимая некоторую полосу. Поэтому в паспорте измерительного преобразователя приводится некоторая средняя характеристика, называемая номинальной. Разности между номинальной (паспортной) и реальной характеристиками преобразователя рассматриваются как его погрешности.

Градуировка измерительного преобразователя (определение реальной функции преобразования) производится с использованием средств измерений неэлектрических и электрических величин. В качестве примера на рисунке 2 представлена структурная схема установки для градуировки реостатного преобразователя. В качестве средства измерения линейного перемещения (неэлектрической величины) используется линейка, а средства измерения электрической величины – активного сопротивления – цифровой измеритель L, C, R E7-8.

Рисунок 2 – Структурная схема установки для градуировки реостатного преобразователя

Процесс градуировки преобразователя заключается в следующем. С помощью механизма перемещения подвижный контакт (движок) реостатного преобразователя последовательно устанавливается на оцифрованные отметки шкалы линейки, и на каждой отметке производится измерение активного сопротивления преобразователя с помощью прибора Е7-8. Измеренные значения линейного перемещения и активного сопротивления заносятся в градуировочную таблицу 1.

Таблица 1

В этом случае получаем функцию преобразования измерительного преобразователя, заданную в табличной форме. Для получения графического изображения функции преобразования необходимо воспользоваться рекомендациями, приведенными на рисунке 1,а .

Следует, однако, иметь в виду, что измерение линейного перемещения и активного сопротивления произведено с погрешностью, обусловленной инструментальными погрешностями используемых средств измерений. В связи с этим и определение функции преобразования было произведено также с некоторой погрешностью (рисунок 3).

Рисунок 3 – Погрешности определения функции преобразования

Поскольку чувствительность преобразователя S , задаваемая наклоном функции преобразования, определяется по формуле (2), то расчет погрешности определения чувствительности преобразователя Δ S должен проводиться на основе алгоритма расчета погрешности результата косвенного измерения. В общем виде расчетная формула для Δ S выглядит следующим образом:

где
,

Δ y 1 и Δ y 2 – погрешности определения выходных величин y 1 и y 2 ,

Δ x 1 и Δ x 2 – погрешности определения входных величин x 1 и x 2 .

Дополнительные погрешности измерительного преобразователя, обусловленные его принципом действия, несовершенством конструкции и технологии изготовления, проявляются при отклонении влияющих величин от нормальных значений.

Кроме рассмотренных выше характеристик, измерительные преобразователи неэлектрических величин в электрические характеризуются: вариацией выходного сигнала, выходным полным сопротивлением, динамическими характеристиками . К важнейшим техническим характеристикам также относятся: габариты, масса, устойчивость к механическим, тепловым, электрическим и другим перегрузкам, надежность, удобство монтажа и обслуживания, взрывобезопасность, стоимость изготовления и т.п. .

Измерительные преобразователи различаются по принципу преобразования сигнала .

    В случае аналогового прямого преобразования (рисунок 4) измеряемая неэлектрическая величина X подается на вход первичного измерительного преобразователя (ПИП). Выходная электрическая величина Y преобразователя измеряется электрическим измерительным прибором (ЭИП), в состав которого входят измерительный преобразователь и индикаторное устройство.

Рисунок 4  Блок-схема прибора с аналоговым прямым преобразованием измеряемой неэлектрической величины

В зависимости от рода выходной величины и требований, предъявляемых к прибору, электрический измерительный прибор может быть различной степени сложности. В одном случае это  магнитоэлектрический милливольтметр, а в другом  цифровой измерительный прибор. Обычно шкалу индикаторного устройства ЭИП градуируют в единицах измеряемой неэлектрической величины. Измеряемая неэлектрическая величина может неоднократно преобразовываться для согласования пределов ее измерения с пределами преобразования ПИП и получения более удобного для ПИП вида входного воздействия. Для выполнения подобных преобразований в прибор вводят предвари тельные преобразователи неэлектрических величин в неэлектрические.

    При большом количестве промежуточных преобразователей в приборах прямого преобразования существенно возрастает суммарная погрешность. Для снижения погрешности применяют дифференциальные из мерительные преобразователи, которые имеют меньшую аддитивную погрешность, менее нелинейную функцию преобразования и более высокую чувствительность по сравнению с устройствами прямого преобразования.

На рисунке 5 показана структурная схема прибора с дифференциальным измерительным преобразователем (ДИП). Преобразователь включает в себя дифференциальное звено ДЗ с двумя выходами, два канала преобразования (П1 и П2) и вычитающее устройство ВУ. При изменении входной измеряемой величины x от начального значения x 0 до значения (x 0 + Δx) выходные величины x 1 и x 2 на выходе ДЗ получают приращения с разными знаками. После их преобразования в П1 и П2 значения на выходе преобразователей y 1 и y 2 вычитаются. В результате выходная величина ДИП (y = y 1 -y 2), поступающая на измерительный механизм ИМ, пропорциональна только приращению Δx измеряемой неэлектрической величины.

Рисунок 5 – Блок-схема прибора с дифференциальным преобразованием измеряемой неэлектрической величины

    В приборах с преобразованием, основанным на принципе компенсации (уравновешивания) в устройстве сравнения УС преобразователя происходит сопоставление измеряемой величины и однородной ей изменяемой величины, создаваемой узлом обратной связи УОС (рисунок 6) Сравнение величин производится до их полного уравновешивания. В качестве узлов обратной связи используются обратные преобразователи, преобразующие электрическую величину в неэлектрическую (например, лампы накаливания, электромеханические преобразователи и др.).

Рисунок 6 – Блок-схема прибора с компенсационным измерительным преобразователем

Приборы компенсационного сравнения по сравнению с приборами прямого преобразования позволяют получить более высокую точность, большее быстродействие, меньше потребляют энергии от объекта исследования.

Электрические приборы для измерения неэлектрических величин могут быть как аналоговыми, так и цифровыми .

Реостатные преобразователи

Реостатные преобразователи основаны на изменении электрического сопротивления проводника под влиянием входной величины – линейного или углового перемещения. Реостатный преобразователь представляет собой реостат (каркас с нанесенной на него проволочной обмоткой), подвижный контакт которого совершает линейное или угловое перемещение под воздействием измеряемой неэлектрической величины. Схематические изображения некоторых конструкций реостатных преобразователей приведены на рисунке 6, а-в. Габариты преобразователя определяются предельными значениями измеряемого перемещения, сопротивлением обмотки и электрической мощностью, рассеиваемой в обмотке. Для получения нелинейной функции преобразования применяют функциональные реостатные преобразователи. Нужный вид функции преобразования достигается профилированием каркаса преобразователя (рисунок 6, в ).

В реостатных преобразователях статическая характеристика преобразования имеет ступенчатый характер, поскольку сопротивление изменяется скачками, равными сопротивлению одного витка. Это вызывает появление соответствующей погрешности, максимальное значение которой можно представить в виде:

, (4)

где R  максимальное сопротивление одного витка;

R  полное сопротивление преобразователя.

В реохордных преобразователях, в которых подвижный контакт скользит вдоль оси проволоки, этой погрешности можно избежать.

Реостатные преобразователи включают в измерительные цепи в виде равновесных и неравновесных мостов, делителей напряжения и т.д.

Рисунок 7 – Реостатные измерительные преобразователи

Основными недостатками реостатных преобразователей являются наличие скользящего контакта, необходимость относительно больших его перемещений, а иногда и значительного усилия для перемещения. К достоинствам относятся простота конструкции и возможность получения значительных по уровню выходных сигналов.

Применяют реостатные преобразователи для измерения сравнительно больших линейных и угловых перемещений, а также других неэлектрических величин, которые могут быть преобразованы в перемещение (усилие, давление и т.п.).

Индуктивные преобразователи

Принцип действия индуктивных преобразователей основан на зависимости собственной или взаимной индуктивностей обмоток на магнитопроводе от взаимного положения, геометрических размеров и магнитного сопротивления элементов магнитной цепи. Из электротехники известно, что индуктивность L обмотки, расположенной на магнитном сердечнике (магнитопроводе), определяется выражением:

, (5)

где Z M  магнитное сопротивление магнитопровода;

w  число витков обмотки.

Взаимная индуктивность M двух обмоток, расположенных на одном магнитопроводе c магнитным сопротивлением Z M , определяется как

, (6)

где w 1 и w 2  число витков первой и второй обмоток.

Магнитное сопротивление определяется выражением:

, ` (7)

где

 активная составляющая магнитного сопротивления;

l i , S i ,  i

 соответственно длина, площадь поперечного сечения и относительная магнитная проницаемость i-го участка магнитопровода;

 магнитная постоянная;

 длина и площадь поперечного сечения воздушного участка магнитной цепи;

 реактивная составляющая магнитного сопротивления;

 потери мощности в магнитопроводе, обусловленные вихревыми токами и гистерезисом;

 угловая частота;

 магнитный поток в магнитопроводе.

Приведенные соотношения показывают, что индуктивность и взаимную индуктивность можно изменять, меняя длину δ или сечение S воздушного участка магнитной цепи, потери мощности Р в магнитопроводе и т. д.

На рисунке 8 схематически показаны различные типы индуктивных преобразователей. Изменение взаимной индуктивности может быть достигнуто, например, перемещением подвижного сердечника (якоря) 1 относительно неподвижного сердечника 2, введением немагнитной металлической пластины 3 в воздушный зазор (рисунок 8 а ).

Рисунок 8 – Индуктивные измерительные преобразователи

Индуктивный преобразователь с переменной длиной воздушного зазора  (рисунок 8,б ) характеризуется нелинейной зависимостью L = f (). Такой преобразователь имеет высокую чувствительность и обычно применяется при перемещении якоря магнитопровода в пределах от 0,01  5 мм.

Значительно меньшей чувствительностью, но линейной зависимостью функции преобразования L = f (S ) отличаются преобразователи с переменным сечением воздушного зазора (рисунок 8, в ). Такие преобразователи используют при измерении перемещений до 10  15 мм.

Широко распространение получили индуктивные дифференциальные преобразователи (рисунок 8, г ), в которых подвижный якорь помещен между двумя неподвижными сердечниками с обмотками. При перемещении якоря под воздействием измеряемой величины одновременно и с различными знаками изменяются длины δ 1 и δ 2 воздушных зазоров преобразователя, при этом индуктивность одной обмотки будет возрастать, а другой – уменьшаться. Дифференциальные преобразователи применяются в сочетании с мостовыми измерительными схемами. По сравнению с недифференциальными преобразователями они имеют более высокую чувствительность, меньшую нелинейность функции преобразования, испытывают меньшее влияние внешних факторов.

Для преобразования сравнительно больших перемещений (до 50 - 100 мм) применяют трансформаторные преобразователи с незамкнутой магнитной цепью (рисунок 8, д ).

Если ферромагнитный сердечник преобразователя подвергать механическому воздействию силой F, то вследствие изменения магнитной проницаемости материала сердечника изменится магнитное сопротивление цепи, что также повлечет изменение индуктивности L и взаимной индуктивности М обмоток. На этой зависимости основан принцип действия магнитоупругих преобразователей (рисунок 8,е ).

Индуктивные преобразователи используют для измерения линейных и угловых перемещений, а также других неэлектрических величин, которые могут быть преобразованы в перемещение (усилие, давление, момент сил и т.п.). Конструкция преобразователя определяется диапазоном измеряемых перемещений. Габариты преобразователя выбираются, исходя из необходимой мощности выходного сигнала.

Для измерения выходного параметра индуктивных преобразователей наибольшее применение получили мостовые (равновесные и неравновесные) и генераторные измерительные цепи, а также цепи с использованием резонансных контуров, которые обладают наибольшей чувствительностью вследствие большой крутизны функции преобразования.

По сравнению с другими преобразователями перемещения индуктивные преобразователи отличаются значительными по мощности выходными сигналами, простотой и надежностью в работе.

Их основными недостатками являются: обратное воздействие на исследуемый объект (воздействие электромагнита на якорь) и влияние инерции якоря на частотные характеристики прибора.

Емкостные преобразователи

Принцип действия емкостных измерительных преобразователей основан на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и диэлектрической проницаемости среды между ними.

Электрическая емкость плоского конденсатора с двумя обкладками описывается выражением:

, (8)

Из данного выражения видно, что емкостной преобразователь может быть построен на основе использования зависимостей С = f (), С = f (S ) или C = f ().

На рисунке 9 схематически показано устройство различных емкостных преобразователей.

Рисунок 9 – Емкостные измерительные преобразователи

Преобразователь на рисунке 9, а представляет собой конденсатор, одна пластина которого перемещается под действием измеряемой неэлектрической величины X относительно неподвижной пластины. Статическая характеристика преобразователя, использующего зависимость С = f () является нелинейной. Чувствительность преобразователя возрастает с уменьшением расстояния между обкладками . Такие преобразователи используют для измерения малых перемещений (менее 1 мм).

Применяют также дифференциальные емкостные преобразователи (рисунок 9, б ), у которых имеется одна подвижная и две неподвижные пластины. При воздействии измеряемой величины X у этих преобразователей одновременно изменяются емкости С1 и С2.

На рисунке 9, в показан дифференциальный емкостной преобразователь с переменной активной площадью пластин, в котором используется зависимость С = f (S ) . Преобразователи с такой конструкцией используют для измерения сравнительно больших перемещений. В этих преобразователях требуемая характеристика преобразования легко может быть получена путем профилирования пластин.

Преобразователи с использованием зависимости С = f () применяют для измерения уровня жидкостей, влажности веществ, толщины изделий из диэлектриков и т.п. В качестве примера на рисунке 9, г приведено устройство преобразователя емкостного уровнемера. Емкость между электродами, опущенными в сосуд, зависит от уровня жидкости.

Для измерения выходного параметра емкостных измерительных преобразователей применяют мостовые, генераторные измерительные цени и цепи с использованием резонансных контуров. Последние позволяют создавать приборы с высокой чувствительностью, которые способны реагировать на линейные перемещения порядка 10 мкм. Цепи с емкостными преобразователями обычно питают током повышенной частоты (до десятков МГц).

испытание кузов автомобиль надежность

Измерительный преобразователь -- техническое средство с нормируемыми метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации и передачи, но непосредственно не воспринимаемый оператором. Измерительный преобразователь или входит в состав какого-либо измерительного прибора (измерительной установки, измерительной системы) или применяется вместе с каким-либо средством измерений.

По характеру преобразования различают следующие преобразователи:

Аналоговый измерительный преобразователь -- это измерительный преобразователь, преобразующий одну аналоговую величину (аналоговый измерительный сигнал) в другую аналоговую величину (измерительный сигнал);

Аналого-цифровой измерительный преобразователь -- это измерительный преобразователь, предназначенный для преобразования аналогового измерительного сигнала в числовой код;

Цифро-аналоговый измерительный преобразователь -- это измерительный преобразователь, предназначенный для преобразования числового кода в аналоговую величину.

По месту в измерительной цепи различают следующие преобразователи:

Первичный измерительный преобразователь -- это измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина. Первичный измерительный преобразователь является первым преобразователем в измерительной цепи измерительного прибора;

Датчик -- это конструктивно обособленный первичный измерительный преобразователь;

Детектор -- это датчик в области измерений ионизирующих излучений;

Промежуточный измерительный преобразователь -- измерительный преобразователь, занимающий место в измерительной цепи после первичного преобразователя.

Передающий измерительный преобразователь -- измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации;

Масштабный измерительный преобразователь -- измерительный преобразователь, предназначенный для изменения размера величины или измерительного сигнала в заданное число раз.

По принципу действия преобразователи делятся на генераторные и параметрические.

Генераторные - это такие преобразователи, которые под действием входной величины сами генерируют электрическую энергию (с выходной величиной - напряжение, или ток). Генераторные измерительные преобразователи могут включаться в измерительную цепь, где отсутствует источник энергии. Примерами генераторных измерительных преобразователей являются термоэлектрические и фотоэлектрические измерительные преобразователи.

Параметрические - это такие преобразователи, которые под действием измеряемой величины изменяют значение выходной величины в зависимости от принципа действия (с выходной величиной в виде изменения сопротивления, емкости и в зависимости от значения входной величины), к ним относятся терморезистивные, емкостные измерительные преобразователи.

По физической закономерности, на которой основано действие преобразователя, все измерительные преобразователи можно разделить на следующие группы:

Резистивные;

Тепловые;

Электромагнитные;

Электростатические;

Электрохимические;

Пьезоэлектрические;

Фотоэлектрические;

Электронные;

Квантовые.

Рассмотрим некоторые группы измерительных преобразователей подробнее.

Резистивные измерительные преобразователи в настоящее время являются самыми распространенными. Принцип действия основан на изменении их электрического сопротивления при изменении входной величины.

Рисунок 1. - Схема резистивного измерительного преобразователя

При построении резистивного измерительного преобразователя стремятся к тому, чтобы изменение сопротивления R происходило под действием одной входной величины (реже двух).

К достоинствам данного преобразователя относятся: простота конструкции, малые размеры и масса, высокая чувствительность, большая разрешающая способность при малом уровне входного сигнала, отсутствие подвижных токосъемных контактов, высокое быстродействие, возможность получения необходимого закона преобразования за счет выбора соответствующих конструктивных параметров, отсутствие влияния входной цепи на измерительную.

Электромагнитные измерительные преобразователи - такие преобразователи составляют большую группу преобразователей для измерения различных физических величин и в зависимости от принципа действия бывают параметрическими и генераторными.

К параметрическим относятся преобразователи, в которых преобразуется выходное механическое воздействие в изменение параметров магнитной цепи - магнитной проницаемости, магнитного сопротивления RМ, индуктивность обмотки L.

К генераторным - преобразователи индукционного типа, использующие закон электромагнитной индукции для получения выходного сигнала. Они могут быть выполнены на базе трансформаторов и электрических машин. Последняя группа - это тахогенераторы, сельсины, поворотные трансформаторы.

Значения L и М можно изменять, уменьшая или увеличивая зазор, изменяя положение якоря, изменяя сечение S магнитного потока, поворачивая якорь относительно неподвижной части магнитной цепи, вводя в воздушный зазор пластину из ферромагнитного материала, соответственно уменьшая 0 и магнитное сопротивление зазора.

Измерительные преобразователи, преобразующие естественную входную величину в виде перемещения в изменение индуктивности называют индуктивными.

Преобразователи, преобразующие перемещение в изменение взаимоиндуктивности М, принято называть трансформаторными.

Рисунок 2 - Схема измерительного преобразователя основанного на изменении магнитного сопротивления

В трансформаторных преобразователях изменение взаимоиндуктивности М можно получить не только при изменении магнитного сопротивления, но и при перемещении одной из обмоток вдоль или поперек магнитной цепи.

Если к замкнутой магнитной цепи преобразователя приложить сжимающие, растягивающие или скручивающие усилия, то под их воздействием изменится магнитная проницаемость 0 сердечника, что приведет к изменению магнитного сопротивления сердечника и соответственно к изменению L или М.

Преобразователи, основанные на изменении магнитного сопротивления, обусловленного изменением магнитной проницаемости ферромагнитного сердечника под воздействием механической деформации, называются магнитоупругими. Их широко применяют для измерения сил, давлений, моментов.

Если в зазоре постоянного магнита, или электромагнита, через обмотку которого пропускается постоянный ток, перемещать обмотку, то согласно закону электромагнитной индукции в обмотке появляется ЭДС, равная

где - скорость изменения магнитного потока, сцепляющегося с витками обмотки W.

Поскольку скорость изменения магнитного потока определяется скоростью перемещения обмотки в воздушном зазоре, то преобразователь имеет естественную входную величину в виде скорости линейных или угловых перемещений, а выходная в виде индуктируемой ЭДС. Такие преобразователи называют индукционными.

Пьезоэлектрические преобразователи - принцип действия таких датчиков основан на использовании прямого и обратного пьезоэлектрического эффекта.

Прямой эффект представляет собой способность некоторых материалов образовывать электрические заряды на поверхности при приложении механической нагрузки.

Обратный эффект - в изменении механического напряжения или геометрических размеров образует материала под воздействием электрического поля.

В качестве пьезоэлектрических материалов используют естественный материал - кварц, турмалин, а также искусственно поляризованную керамику на основе титанита бария, титанита свинца и цирконата свинца.

Количественно пьезоэффект оценивается пьезомодулем Кd, устанавливающем зависимость между возникающим зарядом Q и приложенной силой F, который можно выразить формулой:

Рассмотрим еще один тип измерительного преобразователя тепловые преобразователи.

Их принцип действия основан на использовании тепловых процессов (нагрева, охлаждения, теплообмена) и входной величиной таких датчиков является температура.

Однако они применяются как преобразователи не только температуры, но и таких величин, как тепловой поток, скорость потока газа, влажность, уровень жидкости.

При построении тепловых преобразователей наиболее часто используют такие явления, как возникновение термо-ЭДС, зависимость сопротивления вещества от температуры.

Термопара представляет собой чувствительный элемент, состоящий из двух разных проводников или полупроводников, соединенных электрически, и преобразующий контролируемую температуру в ЭДС.

Принцип действия термоэлектрического преобразователя основан на использовании термоэлектродвижущей силы, возникающей в контуре из двух разнородных проводников, места соединения (спаи) которых нагреты до различных температур.

Знак и значение термо-ЭДС в цепи зависят от типа материала и разности температур в местах спаев.

При небольшом перепаде температур между спаями термо-ЭДС можно считать пропорциональной разности температур:

С помощью термопары можно определять температуру.

В качестве материалов для термопар используют различные драгоценные металлы (платину, золото, иридий, родий и их сплавы), а также неблагородные металла (сталь, никель, хром, сплавы нихрома).

Сравнительно редко применяют термопары из кремния и селена (полупроводники), они имеют малую механическую прочность, обладают большим внутренним сопротивлением, хотя и обеспечивают большую термо-ЭДС по сравнению с металлами.

Термо-ЭДС возникает только в спаях разнородных материалов. При сравнении различных материалов в качестве базовой принимают термо-ЭДС платины, по отношению к которой определяют термо-ЭДС других материалов.

Для повышение выходной ЭДС используют последовательное включение термопар, образующее термобатарею.

Достоинства термопар - возможность измерений в большом диапазоне температур; простота устройства; надежность в эксплуатации.

Недостатки - не высокая чувствительность, большая инерционность, необходимость поддержания постоянной температуры свободных спаев.

Терморезисторные преобразователи работают на основе свойства проводника или полупроводника изменять свое электрическое сопротивление при изменении температуры.

Для таких датчиков используют материалы, обладающие высокой стабильностью, высокой воспроизводимостью электрического сопротивления при данной температуре, значительным удельным сопротивлением, стабильностью химических и физических свойств при нагревании, инертностью к воздействию исследуемой среды.

К таким материалам в первую очередь относятся платина, медь, никель, вольфрам. Наиболее распространены платиновые и медные терморезисторы.

Платиновые терморезисторы используют в диапазоне от 0 до 6500 С; от 0 до - 2000 С. Их недостаток - теряет стабильность характеристик, и возрастает хрупкость материала при высоких температурах.

Медные терморезисторы используются в диапазоне температур от 50 до 1800С, они довольно стойки к коррозии, дешевы.

Их недостатки: высокая окисляемость при нагревании, вследствие чего их применяют в сравнительно узком диапазоне температур в средах с низкой влажностью и при отсутствии агрессивных газов.

Полупроводниковые терморезисторы отличаются от металлических меньшими размерами и инерционностью. Недостаток - нелинейная зависимость сопротивления от температуры.

Терморезисторы обычно применяют для измерения температуры. При этом нагрузочный ток, проходящий через них должен быть мал. Если этот ток будет велик, то перегрев терморезистора по отношению к окружающей среде может стать значительным. Установившее значение перегрева и соответственно сопротивление при этом будет определяться условиями теплоотдачи поверхности терморезистора.

Рисунок 3 - Общий вид термоэлектрического преобразователя

Если нагретый терморезистор поместить в среду с переменными теплофизическими характеристиками, то появляется возможность измерения ряда физических величин: скорости потока жидкости и газов, плотности газов.

Чувствительность проволочных медных терморезисторов постоянна, а чувствительность платиновых изменяется с изменением температуры. При одинаковых значениях R 0 чувствительность медных терморезисторов выше.

Диапазон измеряемых температур с помощью терморезисторами с платиновыми и медными чувствительными элементами от - 200 до + 1100 0 С.

При измерении высоких температур применяются бесконтактные средства измерений - пирометры, которые измеряют температуру по тепловому излучению. Серийно выпускают пирометры, обеспечивающие измерение температур в диапазоне от 20 до 6000 0 С.

В основе бесконтактного метода измерения температур лежит температурная зависимость излучения абсолютно черного тела, т.е. тела, способного полностью поглощать падающее на него излучение любой длины волны.

Лучшие статьи по теме