Как настроить смартфоны и ПК. Информационный портал

Отличия знаний от данных. Особенности знаний, отличающие их от данных

Отличия знаний от данных

Информация, данные, знания

Информация существует в трех видах: в виде данных (Data ), собственно информации (Information ) и знаний (Knowledge ).

При компьютерной обработке информации исходные данные понимаются как данные , и должны быть представлены в форме, которую можно хранить, обрабатывать, передавать.

Данные – зафиксированные наблюдения, которые в данный момент времени не оказывают воздействия на принятие решения.

Данные обычно представлены в форме, которая позволяет использовать их для компьютерной обработки и передачи, то есть, закодированы, могут храниться.

Примеры данных: словарь – упорядоченный набор текстовых данных, энциклопедия – упорядоченный набор данных, произвольный текст (статья, конспект).

Из данных можно извлечь информацию.

Информация – это обработанные данные, которые представлены в виде, пригодном для принятия получателем решения.

Примеры информации: извлеченное из словаря толкование слова, извлеченное из энциклопедии значение термина.

Информацией является содержание, значение данных, или факты, которые используются для принятия решения.

Знания – факты, сообщения об окружающей среде, процедуры и правила манипулирования фактами, а также информация о том, когда и как следует применять эти процедуры и правила.

В целом, знания – это проверенный практикой результат познания действительности, вид информации, которая отображает знания человека, специалиста в предметной области.

Знания различаются: есть декларативные (факты) и процедурные (правила). Декларативные, это знания об определенных явлениях, событиях, свойствах объектов («Я знаю, что…»). Процедурные, это знания о действиях, которые нужно предпринять для достижения какой-либо цели («Я знаю, как…»).

Отличия знаний от данных

1. Интерпретация . Хранимые данные могут быть интерпретированы только человеком или программой. Данные не несут информации. Знания содержат как данные, так и их описание (правила интерпретации).

2. Наличие связей классификации . Данные не имеют эффективного описания связей между различными типами данных. Знания структурированы, так как можно установить соответствие между единицами знаний.

3. Наличие ситуационных связей . Связи описывают множество текущих ситуаций объекта. Данные трудно поддаются анализу. Из структуры и состава знаний по ситуации возможно построение процедур анализа знаний.

Подходы к определению количества информации
(способы измерения информации)

В теории информации доказано, что информация допускает количественную оценку, то есть может быть измерена объективно.

Очевидно, что для этого нужно сделать допущения: в определенных условиях можно пренебречь качественными особенностями информации. Тогда количество информации может быть измерено числом, следовательно, можно сравнить количество информации, содержащейся в различных сообщениях.

Классификация знаний

Трактовки знаний

Представление знаний

Тема 1. Понятие знания

Знание – это проверенный практикой результат познания действительности, отражение в сознании человека.

Знание – закономерности предметной области (принципы, связи, законы), полученные в результате практической деятельности и профессионального опыта, позволяющие специалистам решать задачи в этой области.

Знания – это результат, полученный познанием.

Знания – это формализованная информация, на которую ссылаются когда делают различные заключения на основе имеющихся данных с помощью логических выводов.

Знаниями называют хранимую в ЭВМ информацию, формализованную в соответствии со структурными правилами, которую можно использовать при решении проблем.

· Психологическая : Знание – психологические образы или мысленные модели.

· Интеллектуальная : Знания – совокупность сведений о некоторой предметной области, включающих факты об объектах предметной области, о свойствах объекта, и связывающих их отношений, описаний процессов протекающих в данной предметной области и содержащих информацию о решении типовых задач.

· Формально логическая : Знание – формализованная информация, используемая для получения или вывода новых знаний с помощью специализированных процедур.

· Информационно -технологическая : Знание – структурированная информация, хранящаяся в памяти ЭВМ и используемая при работе интеллектуальных систем.

1. В зависимости от источника:

a. априорные

b. накапливаемые

i. экспертные

ii. наблюдаемые

iii. выводимые

2. В зависимости от характера использования при решении задач:

a. декларативные

b. процедурные

c. метазнания

3. В зависимости от степени достоверности:

a. четкие знания

b. нечеткие знания

4. В зависимости от глубины:

i. поверхностные:

b. знании-копии

c. знания-знакомства

i. глубинные:

1.1. Априорные – закладываются в базу знаний до начала функционирования ИИС включающую эту базу знаний. Кроме того, при работе с базой знаний достоверность содержащихся в ней априорных знании непереоценивается.

1.2. Накапливаемые знания – формируются в процессе работы базы знаний. Источниками этих знаний могут быть эксперты (экспертные), внешние искусственные устройства наблюдатели (наблюдаемые), правила и процедуры вывода и верификация знаний действующих в рамках интеллектуальной системы (выводимые).

2.2. Процедурные знания – информация о способах решения типовых задач в некоторой предметной области.

2.3. Метазнания – знания о знаниях, которые сдержат общие сведения о принципах использования знаний. К уровню метазнаний также относят стратегию управления выбором и применением процедурных знаний.


3. В основе классификации знания в зависимости от степени их достоверности лежат т.н. нефакторы присущие знаниям: неполнота информации о рассматриваемом фрагменте предметной области – это неточность количественных и качественных оценок, неоднозначность правил вывода новых знаний, несогласованность некоторых положений в базе знаний.

4. Поверхностные – знания о видимых взаимосвязях объектов и явлений. Глубинные знания основываются на абстрактных аналогиях позволяющих объяснять суть явлений.


Представление знаний – выражение на к\л формальном языке свойств различных объектов и закономерностей существенных для решения задач.

Основные направления исследований, связанные с представлением знаний:

· разработка методологии построения проблемно-ориентированных математических моделей;

· разработка формального аппарата для описания таких моделей;

· разработка теорий вычислений в таких моделях;

· разработка технологий реализации программной поддержки таких моделей.

При разработке модели представлений знаний могут быть поставлены вопросы: «Что представлять?» и «Как представлять?».

Первый вопрос связан с организацией или выбором структуры знаний.

Второй связан с представлением знаний в выбранной структуре.

Состав знаний ИИС зависит от предметной области от требований и целей пользователя и от назначения структуры системы. При разработке практически любой ИИС требуется иметь следующий минимальный набор знаний:

· знания о процессе решения задач;

· знания о языке общения и способах организации диалога системы с пользователем;

· знания о проблемной области и знания о способах представления и модификации знаний.


Данными называют информацию фактического характера, описывающую объекты, процессы и явления предметной области, а также их свойства.

Знания являются более сложной категорией по сравнению с данными. Знания описывают не только отдельные факты, но и взаимосвязи между ними, поэтому знания иногда называют структурированными данными. Знания представляют собой результат мыслительной деятельности человека, направленной на обобщение его опыта, полученного в результате практической деятельности.

Знания получаются в результате применения к исходным данным некоторых методов обработки, подключения внешних процедур.

ДАННЫЕ + ПРОЦЕДУРА ОБРАБОТКИ = ИНФОРМАЦИЯ

ИНФОРМАЦИЯ + ПРОЦЕДУРА ОБРАБОТКИ = ЗНАНИЯ

Характерная особенность знаний состоит в том, что они не содержаться в исходной системе. Знания возникают в результате сопоставления информационных единиц, нахождения и разрешения противоречий между ними, т.е. знания активны их появление или недостача приводит к реализации некоторых действий или появлению новых знания. Знания отличаются от данных наличием следующих свойств.


1. Внутренняя интерпретация – независимость знаний от интерпретирующей программы, возможность отвечать на вопросы, касающиеся содержимого памяти. Она позволяет соотнести данные хранящиеся в памяти с их смысловым содержанием. Ее наличие обеспечивает возможность построения процедур отвечающих от имени компьютера на вопросы человека о содержимом памяти.

2, 3. Наличие внутренних и внешних структур знания . Распространение принципа деления объектов на уже выделенные компоненты целого, позволяет строить многоуровневые иерархические представления. Объекты части могут интерпретироваться независимо друг от друга, т.е. как элементы множества. Если взаимосвязь отдельных элементов частей является существенной, то ее необходимо отражать в базе знаний. На множестве объектов предметной области, как целых, так и их частей вводятся различные семантические отношения (родовидовые отношения, временные. пространственные) описывающие структуру фрагмента предметной области. Такое структурное представление предметной области является очень важным аспектом знаний, т.к. принципы декомпозиции объектов предметной области и выделения системы отношений между ними базируются на подобных механизмах человеческого мышления.

4. Шкалирование. Позволяет сопоставлять и упорядочивать качественно одинаковые, но различающиеся в количественном плане свойства и отношения объектов предметной области. В памяти человека знания об окружающем мире упорядочены, что определяются различными шкалами. Шкала представляет собой последовательность меток с каждой из которых связано значение оценки или значение некоторой величины. Выделяют следующие виды шкал: 1) Метрические, которые делятся на Абсолютные и Относительные; 2) Порядковые шкалы, которые делятся на лингвистические и оппозиционные. В метрических шкалах по расположению точек можно определить степень отличия соответствующих информационных единиц. С помощью метрических шкал можно установить количественные отношения и порядок тех или иных оценок или величин. В абсолютных метрических шкалах начало отсчета никогда не меняется. В относительных шкалах, начало отсчета меняется в каждом случае и определяется ситуацией или текущим моментом времени. В порядковых шкалах фиксируется порядок информационных единиц в лингвистических порядковых шкалах используются квантификаторы, которые служат для введения количественных или качественных мер. Такие квантификаторы как никогда, очень редко, редко, часто и т.д. В оппозиционных порядковых шкалах концы шкалы соответствуют крайним или несовместимым свойствам и отношениям объектов, которые обозначаются парами антонимов, среднее положение считается нейтральным. Примерами таких антонимов могут служить такие пары: медленный – быстрый, сильный – слабый. Шкалы задаются тремя параметрами.

Понятие, структура, классификация, особенности интеллектуальных систем.

Система называется интеллектуальной, если в ней реализованы 3 базовые функции:

1. Представление и обработка знаний.

2. Рассуждение.

3. Общение.

Пользователь


Функциональные механизмы База знаний

Структурные знания – знания об операционной среде. Метознания – знания о свойствах знаний.

1. Биохимическое (все, что связано с мозгом);

2. Программно-прагматическое направление (написание программ, заменяющих функции).

1. Локальный (задачный) подход: для каждой задачи специальные программы, достигающие результаты не хуже человека.

2. Системный подход, основанный на знаниях –создание средств автоматизации, создание самих программ.

3. Подход использующий метод процедурного программирования – создание алгоритмов на естественных языках.

Основные разделы ИИТ:

1. Управление знаниями.

2. Формальные языки и семантика.

3. Квантовая семантика.

4. Когнитивное моделирование.

5. Конвергентные (сходящиеся) системы поддержки решений.

6. Эволюционные генетические алгоритмы.

7. Нейронные сети.

8. Муравьиные и иммунные алгоритмы.

9. Экспертные системы.

10. Нечеткие множества и вычисления.

11. Немонотонные логики.

12. Активные многоагентные системы.

13. Естественное языковое общение и перевод.

14. Распознавание образов, игра в шахматы.

Характеристики проблемных областей, где необходимо применение ИИС:

1. Качество и оперативность принятия решений.

2. Нечеткость целей.

3. Хаотичность, флюктуируемость и квантованность поведения среды.

4. Множественность взаимозаменяющих друг на друга факторов.

5. Слабая формализуемость.

6. Уникальность (нестереотипность) ситуации.

7. Латентность (скрытость) информации.

8. Девиантность реализации планов, а так же значимость малых действий.

9. Парадоксальность логики решений.

Неустойчивость, нецеленаправленность, хаотичность среды


Понятие данных, информации и знаний. Свойства знаний и отличие их от данных.

Информация – это:

· любые сведения, принимаемые и передаваемые, сохраняемые различными источниками;

· это вся совокупность сведений об окружающем нас мире, о всевозможных протекающих в нем процессах, которые могут быть восприняты живыми организмами, электронными машинами и другими информационными системами;

· это значимые сведения о чём-либо, когда форма их представления также является информацией, то есть имеет форматирующую функцию в соответствии с собственной природой;

· это все то, чем могут быть дополнены наши знания и предположения.

Данными называют информацию фактического характера, описывающую объекты, процессы и явления предметной области, а также их свойства. В процессах компьютерной обработки данные проходят следующие этапы преобразований:

· исходная форма существования данных (результаты наблюдений и измерений, таблицы, справочники, диаграммы, графики и т.д.);

· представление на специальных языках описания данных, предназначенных для ввода и обработки исходных данных в ЭВМ;

· базы данных на машинных носителях информации.

Знание - в теории искусственного интеллекта и экспертных систем - совокупность информации и правил вывода (у индивидуума, общества или системы ИИ) о мире, свойствах объектов, закономерностях процессов и явлений, а также правилах использования их для принятия решений. Главное отличие знаний от данных состоит в их структурности и активности, появление в базе новых фактов или установление новых связей может стать источником изменений в принятии решений.

Для того чтобы поместить знания в информационную систему, их необходимо представить определенными структурами данных, соответствующих выбранной среде разработки интеллектуальной системы. Поэтому при разработке информационной системы сначала осуществляются накопление и представление знаний, причем на этом этапе обязательно участие человека, а затем знания представляются определенными структурами данных, удобными для хранения и обработки в ЭВМ.

Знания в ИС существуют в следующих формах:

· исходные знания (правила, выведенные на основе практического опыта, математические и эмпирические зависимости, отражающие взаимные связи между фактами; закономерности и тенденции, описывающие изменение фактов с течением времени; функции, диаграммы, графы и т. д.);

· описание исходных знаний средствами выбранной модели представления знаний (множество логических формул или продукционных правил, семантическая сеть, иерархии фреймов и т. п.);

· представление знаний структурами данных, которые предназначены для хранения и обработки в ЭВМ;

· базы знаний на машинных носителях информации.

Знания являются более сложной категорией по сравнению с данными. Знания описывают не только отдельные факты, но и взаимосвязи между ними, поэтому знания иногда называют структурированными данными. Знания представляют собой результат мыслительной деятельности человека, направленной на обобщение его опыта, полученного в результате практической деятельности.

Знания получаются в результате применения к исходным данным некоторых методов обработки, подключения внешних процедур.

ДАННЫЕ + ПРОЦЕДУРА ОБРАБОТКИ = ИНФОРМАЦИЯ

ИНФОРМАЦИЯ + ПРОЦЕДУРА ОБРАБОТКИ = ЗНАНИЯ

Характерная особенность знаний состоит в том, что они не содержаться в исходной системе. Знания возникают в результате сопоставления информационных единиц, нахождения и разрешения противоречий между ними, т.е. знания активны их появление или недостача приводит к реализации некоторых действий или появлению новых знания. Знания отличаются от данных наличием следующих свойств.

Свойства знаний (из лекций):

· Внутренняя интерпритируемость (данные+методанные). Методанные -структурированные данные, представляющие собой характеристики описываемых сущностей для целей их идентификации, поиска, оценки, управления ими

· Наличие связей (внутренних, внешних), структура связи

· Возможность шкалирования (оценка соотношения между информационными единицами) – количественная

· Наличие семантической метрики (средства оценки плохо формализуемых информационных единиц)

· Наличие активности (неполнота, неточность побуждает их к развитию, пополнению).


Классификация знаний

Знание – форма существования и систематизации результатов познавательной деятельности человека. Знание помогает людям рационально организовывать свою деятельность и решать различные проблемы, возникающие в её процессе.

Знание (в теории искусственного интеллекта и экспертных систем) – совокупность информации и правил вывода (у индивидуума, общества или системы ИИ) о мире, свойствах объектов, закономерностях процессов и явлений, а также правилах использования их для принятия решений.

Главное отличие знаний от данных состоит в их структурности и активности, появление в базе новых фактов или установление новых связей может стать источником изменений в принятии решений.

Выделяют различные виды знания:

Научное,

Вненаучное,

Обыденно-практическое (обыденное, здравый смысл),

Интуитивное,

Религиозное, и др.

Обыденно-практическое знание носит несистемный, бездоказательный, бесписьменный характер. Обыденное знание служит основой ориентации человека в окружающем мире, основой его повседневного поведения и предвидения, но обычно содержит ошибки, противоречия. Научное знание, основанное на рациональности, характеризуется объективностью и универсальностью, и претендует на общезначимость. Его задача – описать, объяснить и предсказать процесс и явление действительности. Вненаучное знание продуцируется определённым интеллектуальным сообществом по отличным от рационалистических нормам, эталонам, имеют свои источники и средства познания.

Классификация знаний

I. по природе. Знания могут быть декларативные и процедурные .

Декларативные знания содержат в себе лишь представление о структуре неких понятий. Эти знания приближены к данным, фактам. Например: высшее учебное заведение есть совокупность факультетов, а каждый факультет, в свою очередь, есть совокупность кафедр. Процедурные же знания имеют активную природу. Они определяют представления о средствах и путях получения новых знаний, проверки знаний. Это алгоритмы разного рода. Например: метод мозгового штурма для поиска новых идей.

II. по степени научности. Знания могут быть научными и вненаучными .Научные знания могут быть:

1) эмпирическими (на основе опыта или наблюдения);

2) теоретическими (на основе анализа абстрактных моделей, аналогий, схем, отображающих структуру и природу процессов, т.е. обобщение эмпирических данных).

Вненаучные знания могут быть:

 паранаучными знаниями – учения или размышления о феноменах, объяснение которых не является убедительным с точки зрения критериев научности.

 лженаучными – сознательно эксплуатирующие домыслы и предрассудки.

 квазинаучными – они ищут себе сторонников и приверженцев, опираясь на методы насилия и принуждения. Квазинаучное знание, как правило, расцветает в условиях строго иерархированной науки, где невозможна критика власть предержащих, где жестко проявлен идеологический режим. (В истории России периоды «триумфа квазинауки» хорошо известны: лысенковщина; фиксизм, и т.д.)

 антинаучными – как утопичные и сознательно искажающие представления о действительности.

 псевдонаучными – представляют собой интеллектуальную активность, спекулирующую на совокупности популярных теорий (истории о древних астронавтах, о снежном человеке, о чудовище из озера Лох-Несс)

 обыденно-практическими – доставлявшими элементарные сведения о природе и окружающей действительности. Обыденное знание включает в себя и здравый смысл, и приметы, и назидания, и рецепты, и личный опыт, и традиции. Оно хотя и фиксирует истину, но делает это не систематично и бездоказательно.

 личностными – зависящими от способностей того или иного субъекта и от особенностей его интеллектуальной познавательной деятельности. Коллективное же знание общезначимо (надличностно), предполагает наличие общей для всей системы понятий, способов, приёмов и правил построения. III. по местонахождению

Выделяют личностные (неявные, скрытые, пока неформализованные) знания и формализованные (явные) знания.

Неявные знания – знания людей, которые ещё не формализованы и не могут быть переданы другим людям.

Формализованные на некотором языке (явные) знания:

 знания в документах;

 знания на компакт-дисках;

 знания в персональных компьютерах;

 знания в Интернете;

 знания в базах знаний;

 знания в экспертных системах, извлечённые из неявных знаний людей-экспертов.

Отличительные характеристики знания все ещё являются предметом неопределённости в философии. Согласно большинству мыслителей, для того чтобы нечто считалось знанием, это нечто должно удовлетворять трем критериям:

a) быть подтверждаемым,

b) быть истинным,

c) заслуживающим доверия.


Похожая информация.


5.1. Отличия знаний от данных

Характерным признаком интеллектуальных систем является наличие знаний, необходимых для решения задач конкретной предметной области. При этом возникает естественный вопрос, что такое знания и чем они отличаются от обычных данных, об­рабатываемых ЭВМ.

Данными называют информацию фактического характера, описывающую объекты, процессы и явления предметной облас­ти, а также их свойства. В процессах компьютерной обработки данные проходят следующие этапы преобразований:

Исходная форма существования данных (результаты наблю­дений и измерений, таблицы, справочники, диаграммы, графики и т.д.);

Представление на специальных языках описания данных, предназначенных для ввода и обработки исходных данных в ЭВМ;

Базы данных на машинных носителях информации.

Знания являются более сложной категорией информации по сравнению с данными. Знания описывают не только отдельные факты, но и взаимосвязи между ними, поэтому знания иногда на­зывают структурированными данными. Знания могут быть полу­чены на основе обработки эмпирических данных. Они представ­ляют собой результат мыслительной деятельности человека, на­правленной на обобщение его опыта, полученного в результате практической деятельности.

Для того чтобы наделить ИИС знаниями, их необходимо представить в определенной форме. Существуют два основных способа наделения знаниями программных систем. Первый - по­местить знания в программу, написанную на обычном языке про­граммирования. Такая система будет представлять собой единый программный код, в котором знания не вынесены в отдельную категорию. Несмотря на то что основная задача будет решена, в этом случае трудно оценить роль знаний и понять, каким образом они используются в процессе решения задач. Нелегким делом яв­ляются модификация и сопровождение подобных программ, а проблема пополнения знаний может стать неразрешимой.

Второй способ базируется на концепции баз данных и заклю­чается в вынесении знаний в отдельную категорию, т.е. знания представляются в определенном формате и помещаются в БЗ. Ба­за знаний легко пополняется и модифицируется. Она является автономной частью интеллектуальной системы, хотя механизм логического вывода, реализованный в логическом блоке, а также средства ведения диалога накладывают определенные ограниче­ния на структуру БЗ и операции с нею. В современных ИИС при­нят этот способ.

Следует заметить, что для того, чтобы поместить знания в компьютер, их необходимо представить определенными структурами данных, соответствующих выбранной среде разработки ин­теллектуальной системы. Следовательно, при разработке ИИС сначала осуществляются накопление и представление знаний, причем на этом этапе обязательно участие человека, а затем зна­ния представляются определенными структурами данных, удоб­ными для хранения и обработки в ЭВМ. Знания в ИИС сущест­вуют в следующих формах:

Исходные знания (правила, выведенные на основе практи­ческого опыта, математические и эмпирические зависимости, отражающие взаимные связи между фактами; закономерности и тенденции, описывающие изменение фактов с течением време­ни; функции, диаграммы, графы и т. д.);

Описание исходных знаний средствами выбранной модели представления знаний (множество логических формул или про­дукционных правил, семантическая сеть, фреймы и т. п.);

Представление знаний структурами данных, которые пред­назначены для хранения и обработки в ЭВМ;

Базы знаний на машинных носителях информации.

Что же такое знания? Приведем несколько определений.

Из толкового словаря С. И. Ожегова: 1) «Знание - постиже­ние действительности сознанием, наука»; 2) «Знание - это сово­купность сведений, познаний в какой-либо области».

Определение термина «знания» включает в себя большей частью философские элементы. Например, знание - это проверенный практикой результат познания действительности, верное ее отображение в сознании человека.

Знание есть результат, полученный познанием окружающего мира и его объектов. В простейших ситуациях знания рассматривают как констатацию фактов и их описание.

Исследователями в области ИИ даются более конкретные оп­ределения знаний.

«Знания - это закономерности предметной области (принци­пы, связи, законы), полученные в результате практической дея­тельности и профессионального опыта, позволяющие специали­стам ставить и решать задачи в этой области» .

«Знания - это хорошо структурированные данные или дан­ные о данных, или метаданные» .

«Знания - формализованная информация, на которую ссы­лаются или используют в процессе логического вывода» .

В области систем ИИ и инженерии знаний определение знаний увязывается с логическим выводом: знания - это информация, на основании которой реализуется процесс логического вывода, т.е. на основании этой информации можно делать различные заключения по имеющимся в системе данным с помощью логического вывода. Механизм логического вывода позволяет связывать воедино отдельные фрагменты, а затем на этой последовательности связанных фрагментов делать заключение.

Знания - это формализованная информация, на которую ссылаются или которую используют в процессе логического вывода (рис. 5.1.).


Рис. 5.1. Процесс логического вывода в ИС

Под знанием будем понимать совокупность фактов и правил. Понятие правила, представляющего фрагмент знаний, имеет вид:

Если <условие> то <действие>.

Это определение есть частный случай предыдущего определения.

Однако признается, что отличительные качественные особенности знаний обусловлены наличием у них больших возможностей в направлении структурирования и взаимосвязанности составных единиц, их интерпретируемости, наличие метрики, функциональной целостности, активности.

Существует множество классификаций знаний. Как правило, с помощью классификаций систематизируют знания конкретных предметных областей. На абстрактном уровне рассмотрения можно говорить о признаках, по которым подразделяются зна­ния, а не о классификациях. По своей природе знания можно разделить на декларативные и процедурные.

Декларативные знания представляют собой описания фактов и явлений, фиксируют наличие или отсутствие таких фактов, а также включают описания основных связей и закономерностей, в которые эти факты и явления входят.

Процедурные знания - это описания действий, которые воз­можны при манипулировании фактами и явлениями для дости­жения намеченных целей.

Для описания знаний на абстрактном уровне разработаны специальные языки - языки описания знаний. Эти языки также делятся на языки процедурного типа и декларативного. Все языки описания знаний, ориентированные на использование тради­ционных компьютеров фон-неймановской архитектуры, являют­ся языками процедурного типа. Разработка языков декларатив­ного типа, удобных для представления знаний, является актуаль­ной проблемой сегодняшнего дня.

По способу приобретения знания можно разделить на факты и эвристику (правила, которые позволяют сделать выбор при отсут­ствии точных теоретических обоснований). Первая категория знаний обычно указывает на хорошо известные в данной пред­метной области обстоятельства. Вторая категория знаний осно­вана на собственном опыте эксперта, работающего в конкретной предметной области, накопленном в результате многолетней практики.

По типу представления знания делятся на факты и правила, Факты - это знания типа «А - это А», такие знания характерны для баз данных и сетевых моделей. Правила, или продукции, - это знания типа «ЕСЛИ А, ТО В».

Кроме фактов и правил существуют еще метазнания - знания о знаниях. Они необходимы для управления БЗ и для эффектив­ной организации процедур логического вывода.

Форма представления знаний оказывает существенное влия­ние на характеристики ИИС. Базы знаний являются моделями человеческих знаний. Однако все знания, которые привлекает человек в процессе решения сложных задач, смоделировать не­возможно. Поэтому в интеллектуальных системах требуется чет­ко разделить знания на те, которые предназначены для обработ­ки компьютером, и знания, используемые человеком. Очевидно, что для решения сложных задач БЗ должна иметь достаточно большой объем, в связи с чем неизбежно возникают проблемы управления такой базой. Поэтому при выборе модели представ­ления знаний следует учитывать такие факторы, как однород­ность представления и простота понимания. Однородность пред­ставления приводит к упрощению механизма управления знани­ями. Простота понимания важна для пользователей интеллекту­альных систем и экспертов, чьи знания закладываются в ИИС. Если форма представления знаний будет трудна для понимания, то усложняются процессы приобретения и интерпретации зна­ний. Следует заметить, что одновременно выполнить эти требо­вания довольно сложно, особенно в больших системах, где неиз­бежным становится структурирование и модульное представле­ние знаний.

Решение задач инженерии знаний выдвигает проблему преобразования информации, полученной от экспертов в виде фактов и правил их использования, в форму, которая может быть эффективно реализована при машинной обработке этой информации. С этой целью созданы и используются в действующих системах различные модели представления знаний.

К классическим моделям представления знаний относятся логи­ческая, продукционная, фреймовая и модель семантической сети.

Каждой модели отвечает свой язык представления знаний. Однако на практике редко удается обойтись рамками одной мо­дели при разработке ИИС за исключением самых простых случа­ев, поэтому представление знаний получается сложным. Кроме комбинированного представления с помощью различных моде­лей, обычно используются специальные средства, позволяющие отразить особенности конкретных знаний о предметной области, а также различные способы устранения и учета нечеткости и не­полноты знаний.



Данные и знания

Информация

Данные

Процедурная декларативная

Предметной областью

Знания

Логический вывод

фактами Эвристики

механизмом вывода , логическим выводом или машиной вывода .

интерфейс

База знаний,

Механизм вывода,

Интерфейс с пользователем.

Понятие формальной системы

Основой логических моделей является понятие формальной системы, задаваемой четверкой M = (T , P , A , F ).

Множество T есть множество базовых элементов различной природы, например слов из некоторого ограниченного словаря. Предполагается, что существует процедура П(Т ) проверки принадлежности произвольного элемента множеству Т .

Множество P есть множество синтаксических правил. С их помощью из элементов T образуют синтаксически правильные выражения, например, из слов ограниченного словаря строятся синтаксически правильные выражения. Должна существовать процедура П(Р ), позволяющая определить, является ли

некоторое выражение синтаксически правильным.

В множестве Р выделяется подмножество А априорно истинных выражений (аксиом). Должна существовать процедура П(А ) проверки принадлежности любого синтаксически правильного выражения множеству А .

Множество F есть множество семантических правил вывода. Применяя их к элементам А , можно получать новые синтаксически правильные выражения, к которым снова можно применять правила из F . Так формируется множество выводимых в данной формальной системе выражений. Если имеется процедура П(F ), позволяющая определить для любого синтаксически правильного выражения является ли оно выводимым, то соответствующая формальная система называется разрешимой .

Для знаний, входящих в базу знаний, можно считать, что множество А образуют все информационные единицы, введенные в базу знаний, а с помощью правил вывода из них выводятся новые производные знания . Другими словами, формальная система представляет собой генератор новых знаний, образующих множество выводимых в данной системе знаний .

Данная модель лежит в основе построения многих дедуктивных ИИС . В таких системах база знаний описывается в виде предложений и аксиом теории, а механизм вывода реализует правила построения новых предложений из имеющихся в базе знаний. На вход системы поступает описание задачи на языке этой теории в виде запроса (предложения, теоремы), явно не представленного в БЗ. Процесс работы механизма вывода называют доказательством запроса (теоремы).

Использование логик различного типа при построении синтаксических и семантических правил порождает логические модели различных типов.

Исчисление высказываний

Исчисление высказываний изучает предложения, которые могут быть либо истинными, либо ложными. Не всякое предложение является высказыванием. Например, бессмысленно говорить об истинности вопросительных предложений. Не являются высказываниями предложения, для которых нет единого мнения о том, истинны эти предложения или ложны. По-видимому, далеко не все согласятся с утверждением «математическая логика – увлекательный предмет».

Предложение «Шел снег» также не является высказыванием, так как, чтобы судить о его истинности, нужны дополнительные сведения о том, когда и где шел снег.

Объединяя предложения с помощью связок типа «и» , «или» ,«если… то…» , можно образовывать новые предложения.

В исчислении высказываний используется пять логических связок: отрицание, конъюнкция, дизъюнкция, импликация и эквивалентность.

Конъюнкция (логическое И ) истинна только тогда, когда оба составляющих ее высказывания истинны.

Дизъюнкция (логическое ИЛИ ) ложна только тогда, когда ложны оба составляющих ее высказывания.

У импликации (соответствует связке «Если…, то… ») первый операнд называется посылкой, а второй – заключением. Импликация ложна только тогда, когда ее посылка истинна, а заключение – ложно.

Логическая операция эквивалентность соответствует связке «тогда и только тогда ». Ее результатом является истина , если оба высказывания или одновременно истинны, или одновременно ложны.

Логическое отрицание выполняется над одним высказыванием. Высказывание и его отрицание всегда имеют противоположные истинностные значения.

Символы, используемые для обозначений высказываний, называют атомами .

Правильно построенные формулы в логике высказываний рекурсивно определяются следующим образом:

1) атом есть формула;

2) если A и B – формулы, то формулами являются

и ØA , A Ù B , A Ú B , A ® B , A « B .

Здесь связки обозначены символами:

Ú - логическое ИЛИ (дизъюнкция);

Ù - логическое И (конъюнкция);

® - логическое СЛЕДУЕТ (импликация);

« - логическое ЭКВИВАЛЕНТНО (эквиваленция);

Ø - логическое отрицание.

Интерпретацией формулы называется приписывание каждому атому, входящему в формулу, истинностного значения (истина или ложь ).

Формула, состоящая из n различных атомов, имеет 2 n различных интерпретаций.

Формула, истинная при всех интерпретациях, называется общезначимой (например, A Ú ØA ).

Формула, ложная при всех интерпретациях, называется противоречивой (например, A ÙØA ).

Формула, для которой существует хотя бы одна интерпретация, при которой она истинна, называется выполнимой.

Эквивалентными называются формулы, истинностные значения которых совпадают при всех интерпретациях. С помощью эквивалентных замен формулы можно преобразовывать из одной формы в другую.

Для преобразований формул исчисления высказываний применяют следующие эквивалентности:

1) A Ú ØA = true (истина);

A Ù ØA = false (ложь);

2) правило двойного отрицания

Ø (ØA ) = A ;

3) A ® B = ØA Ú B ;

4) A « B = (A ® B ) Ù (B ® A );

5) законы коммутативности

A Ú B = B Ú A , A Ù B = B Ù A ;

6) законы ассоциативности

(A Ú B ) Ú C =A Ú (B Ú C ), (A Ù B ) ÙC = A Ù (B Ù C );

7) законы дистрибутивности

A Ú (B Ù C ) = (A Ú B ) Ù (A Ú C ), A Ù (B Ú C ) = (A Ù B ) Ú (A Ù C );

8) законы де Моргана

Ø(A Ú B ) = ØA Ù ØB , Ø(A Ù B ) = ØA Ú ØB ;

9) A ® B = ØB ® ØA .

Исчисление предикатов

Аппарат исчисления высказываний во многих случаях не позволяет удовлетворительно описать предметную область. Значительная часть предметных областей может быть описана средствами исчисления предикатов первого порядка. Для этого в рассмотрение вводятся:

а) константы, обозначающие индивидуальный объект или понятие;

б) переменные, которые в разное время могут обозначать разные объекты;

в) термы, простейшими из которых являются константы и переменные, а в более общем случае представляемые выражениями типа , где - функциональный символ, а - термы;

г) предикаты, используемые для представления отношений между объектами в некоторой предметной области;

д) кванторы – средство задания количественных характеристик предметной области.

Предикат – это логическая функция, принимающая только истинностные значения «истина » или «ложь ».

Предикат состоит из предикатного символа и соответствующего ему упорядоченного множества термов, являющихся его аргументами. Предикатный символ P используется для именования отношений между объектами. Если он имеет n аргументов, то называется n-местным предикатным символом.

Запись , являющаяся простейшей (атомарной) формулой, означает, что истинно высказывание: объекты связаны отношением P.

С помощью тех же логических связок, что и в исчислении высказываний (И, ИЛИ, НЕ, СЛЕДУЕТ, ЭКВИВАЛЕНТНО ), можно строить более сложные формулы.

Для определения областей действия переменных в формулах используются кванторы (всеобщности) и (существования). Кванторы позволяют строить высказывания о множестве объектов и формулировать утверждения, истинные для этого множества.

Формулы исчисления предикатов (ППФ – правильно построенные формулы) определяются рекурсивно следующим образом:

1. атом есть формула;

2. если A и B – формулы, то формулами являются и

ØA , A Ù B , A Ú B , A ® B , A « B ;

3. если - есть формула, то формулами являются и и .

Интерпретация формул в исчислении предикатов – это задание областей значений всем константам, функциональным и предикатным символам. Формула, интерпретируемая на области D , принимает значения истина или ложь по следующим правилам:

а) если заданы значения формул A и B , то истинностные значения формул ØA , A Ù B , A Ú B , A ® B , A « B получаются по таблицам истинности, справедливым для исчисления высказываний;

б) формула получает значение истина , если для каждого из D имеет значение истина , в противном случае ее значение – ложь .

в) формула получает значение истина , если хотя бы для одного из D имеет значение истина , в противном случае ее значение – ложь.

Формула A есть логическое следствие формул , тогда и только тогда, когда для любой интерпретации, в которой формула истинна, формула A также истинна.

Кроме формул эквивалентных преобразований, приведенных для исчисления высказываний, в исчислении предикатов справедливы следующие:

Ø($ ) = () (Ø );

Ø() = () (Ø ).

Виды фреймов

По познавательному назначению различают два типа фреймов: фрейм – прототип и фрейм – пример. Фрейм – прототип отражает знания об абстрактных стереотипных понятиях, которые являются классами каких-то конкретных объектов. Фреймы-прототипы отражают интенсиональные знания, т.е. обобщенные знания о закономерностях, присущих рассматриваемому классу объектов. Фреймы – примеры отражают знания о конкретных фактах предметной области, или так называемые экстенсиональные знания. Переход от фрейма-прототипа к фрейму-экземпляру выполняется при проведении процедуры означивания фрейма-прототипа в процессе работы механизма логического вывода.

В качестве примера рассмотрим упрощенную схему фрейма – прототипа понятия ДАТА:

<ДАТА> (<МЕСЯЦ><имя>)(<ДЕНЬ><целые числа {1,2,…, 31}>)

(<ГОД><функция>)(<ДЕНЬ НЕДЕЛИ><перечень {ПНД,ВТР,…,ВСК}>

<функция>)

Имя фрейма – прототипа – ДАТА. В слоте МЕСЯЦ на месте значения записано ИМЯ, т.е. значением слота может быть любое буквенное выражение. Значением слота ДЕНЬ являются целые числа, причем перечень их приведен в слоте. В слоте ГОД указана функция, которая может реализовать следующие действия. Если во входном предложении указан год, то он вносится в поле значения слота во фрейме – примере; если год не указан, то отсутствующее значение заполняется текущим годом. Такого рода функции называются функциями, выполняемыми по умолчанию.

В слоте ДЕНЬ НЕДЕЛИ также определена функция, которая при обработке входного сообщения будет вызываться автоматически для проверки на непро-

тиворечивость значения дня недели, указанного пользователем, либо вычисле-

ния этого значения, если пользователь его не указал.

Конкретный фрейм – пример фрейма ДАТА может выглядеть следующим образом:

<ISA ДАТА>(<МЕСЯЦ><ИЮНЬ>)(<ДЕНЬ><5>)

Метка ISA обозначает, что данный фрейм является фреймом – примером. Здесь заполнены только 2 слота. Значения остальных могут быть вычислены с помощью соответствующих процедур.

Процедуры, включаемые в слот, делят на два типа: процедуры – демоны и

процедуры – слуги.

Процедуры – демоны активизируются автоматически каждый раз, когда данные попадают в соответствующий фрейм – пример или удаляются из него. Так, процедура, встроенная в слот ДЕНЬ НЕДЕЛИ в описанном выше примере, является представителем процедуры – демона. С помощью процедур этого типа выполняются все рутинные операции, связанные с ведением баз данных и знаний.

Процедуры – слуги активизируются только по запросу. Примером такой процедуры является функция, встроенная в слот ГОД в фрейме – прототипе ДАТА, которая вызывается только в том случае, если пользователь не указал год.

Рис. 4.6 Сеть фреймов

на фрейм Ребенок. Наследование слота «любит» из фрейма Ребенок.

Запрос 2. Каков возраст учеников?

Ответ: 6-17 – значение слота «возраст» берется из фрейма Ученик. Значение из фрейма Ребенок не берется, т.к. значение указано явно в самом фрейме «ученик», относительно которого задается вопрос.

По функциональному назначению различают следующие виды фреймов:

Фреймы – объекты (пример выше);

Фреймы – операции (например, фрейм «процесс синтеза корректирующих устройств», слоты: модель, алгоритм расчета, параметры и т.д.);

Фреймы – ситуации (например, фрейм «Аварийный режим работы аналогового датчика», слоты: напряжение, сила тока и т.д.);

Фреймы – сценарии (например, фрейм «Тушение пожара», слоты: место пожара, средства тушения и т.д.).

Фреймовая модель представления знаний используется в языках FRL (Frame Representation Language ) ,KRL (Knowledge Representation Language ) и др.

Особенности логического вывода

Во фреймовых языках основной операцией является поиск по образцу . Образец представляет собой фрейм, в котором заполнены не все структурные единицы, а только те, по которым среди фреймов, хранящихся в памяти системы, будут отыскиваться нужные фреймы. Образец может, например, содержать имя фрейма, а также имя некоторого слота во фрейме с указанием значения слота. Такой образец проверяет наличие в памяти системы фрейма с данным именем и данным значением слота, указанного в образце. В образце может быть указано имя некоторого слота и его значение. Тогда процедура поиска по образцу должна обеспечить выборку всех фреймов, в которых содержится слот с таким именем и таким значением слота, как у образца. Наконец, может быть задана некоторая логическая функция от имени фрейма, каких-то имен слотов и значений слотов. Таким образом, логический вывод в сети фреймов основан на операции сопоставления.

Другими процедурами, характерными для фреймовых языков, являются процедуры наполнения слотов данными, а также процедуры введения в систему новых фреймов-прототипов (т.е. новых знаний) и введения новых связей между ними.

Рассмотрим фрагмент описания из "мира блоков" (рис. 4.7) в виде фреймов на языке FRL.

Рис. 4.7 «Мир блоков»

(frame (name (Cube )) (length (NULL )) (width (IF-DEFAULT (use length ))) (height (IF-DEFAULT (use length )))) (frame (name (B 1)) (AKO (Cube )) (color (red )) (length (80))) (frame (name (B 2)) (AKO (Cube )) (color (green )) (length (65))))

Слот AKO указывает на то, что объекты B 1 и B 2 являются подтипом объекта Cube и наследуют его свойства, а именно, length = width = height. Процедура - демон IF-DEFAULT заполняет значения слотов по умолчанию.

Допустим, роботу дается приказ «Возьми желтый предмет, который поддерживает пирамиду». На языке представления знаний вопрос записывается так:

(object X (color (yellow )) (hold Y (type (pyramid ))))

Программа сопоставления с образцом находит в базе знаний описание объектов:

(frame (name (B 3)) (type (block )) (color (yellow )) (size (20 20 20)) (coordinate (20 50 0)) (hold (P 2)))

(frame (name (P 2)) (type (pyramid )) ...)

Ответ получен: X = B 3, Y = P 2, и роботу выдается команда take (object B 3).

Достоинства фреймов как модели представления знаний – возможность структуризации базы знаний благодаря свойствам иерархичности и наследования. Недостатком является сложность организации логического вывода.

Лекция. Основы построения продукционной системы

Применение метаправил

Иногда, для того чтобы решить, какое правило следует активизировать, желательно использовать конкретные знания, а не следовать общей стратегии разрешения конфликтов. С этой целью в некоторые интерпретаторы правил включены средства, позволяющие программисту сформулировать и ввести в программу метаправила. Метаправила определяют правила, по которым выполняется отбор из списка заявок тех правил, которые следует рассматривать в первую очередь или, более того, выполнять обязательно.

Метаправила позволяют значительно сузить круг правил - кандидатов на основании какого-либо критерия или изменить порядок приоритетов правил. Метаправила часто используют знания из конкретной предметной области. Примером может служить приведенное ниже метаправило, относящееся к сис-

теме медицинской диагностики MYCIN .

МЕТАПРАВИЛО 001

ЕСЛИ (1) инфекция относится к классу pelvic-abscess , и

(2) существуют правила, в предпосылках которых упоминается

enterobacteria , и

(3) существуют правила, в предпосылках которых упоминается

грамположительная окраска,

ТО с уверенность 0.4 приоритет следует отдать первым из перечисленных правил.

Лекция. Основные понятия в области искусственного интеллекта

Область науки, получившая название «искусственный интеллект», имеет целью выявить принципиальные механизмы, лежащие в основе человеческой деятельности, чтобы применить их при решении конкретных научно-технических задач. «Разумные» системы создаются для работы в средах, где присутствие человека невозможно или опасно для жизни. Этим устройствам придется действовать в условиях большого разнообразия возможных ситуаций. Невозможно заранее описать эти ситуации с той степенью подробности и однозначности, которые позволили бы заложить в создаваемую систему жестко запрограммированные алгоритмы поведения. Поэтому системы, вооруженные искусственным интеллектом, должны располагать механизмами адаптации, которые позволили бы им строить программы целесообразной деятельности по решению поставленных перед ними задач на основании конкретной ситуации, складывающейся на данный момент в окружающей их среде.

Такая постановка проблемы выдвигает перед исследователями особые задачи, не возникавшие ранее при проектировании технических систем. К числу таких задач относятся: описание богатой внешней среды и ее отражение внутри системы (эту задачу называют задачей представления знаний); управление банком знаний, его пополнение, обнаружение противоречий и недостатка в знаниях; восприятие внешней среды с помощью различного рода рецепторов (зрительных, тактильных, слуховых и т.д.); понимание естественного языка, который служит для человека универсальным средством коммуникации; восприятие печатного текста и устной речи и преобразование содержащейся в сообщениях информации в форму представления знаний; планирование деятельности – задача, решение которой позволит системе формировать планы достижения цели с помощью имеющихся в ее распоряжении средств; адаптация и обучение на основе накопленного опыта.

Таково поле деятельности специалистов в области систем искусственного интеллекта. Оно лежит на стыке самых разнообразных дисциплин: программирования и психологии, техники и лингвистики, математики и физиологии.

Итак, теория искусственного интеллекта – это наука о знаниях, о том, как их извлекать, представлять в искусственных системах, перерабатывать внутри системы и использовать для решения практических задач. Другими словами, системы, изучаемые в рамках искусственного интеллекта и создаваемые в русле этой науки, - это системы, работа которых опирается на знания, отражающие семантику и прагматику того внешнего мира, в котором действуют интеллектуальные системы.

Таким образом, основными проблемами искусственного интеллекта являются представление и обработка знаний. Решение этих проблем состоит как в разработке эффективных моделей представления знаний, методов получения новых знаний, так и в создании программ и устройств, реализующих эти модели и методы.

Элементы искусственного интеллекта находят широкое применение для создания интеллектуальных программных средств ЭВМ, автоматизированных систем управления (АСУ), систем автоматизации проектирования (САПР), информационно-поисковых систем (ИПС), систем управления базами данных (СУБД), экспертных систем (ЭС), систем поддержки принятия решений (СППР), т.е. позволяют повысить уровень интеллектуальности создаваемых информационных систем.

Достижения в области искусственного интеллекта применяются в промышленности (открытие и разработка месторождений, космонавтика, автомобилестроение, химия, и т.д.), в экономике (финансы, страхование, и т.д.), в непромышленной сфере (транспорт, медицина, связь и т.д.), в сельском хозяйстве.

Средства искусственного интеллекта позволяют разрабатывать модели и программы решения задач, для которых неизвестны прямые и надежные методы решения. Такие задачи относятся к области творческой деятельности человека. Специалисты по искусственному интеллекту ставят такие научные проблемы, как доказательство математических теорем, диагностика заболеваний или неисправностей в оборудовании, финансовый анализ субъектов хозяйствования, синтез программ на основе спецификаций, понимание текста на естественном языке, анализ изображения и идентификация его содержимого, управление роботом и др.

Данные и знания

Приведем определения основных понятий изучаемой дисциплины и рассмотрим различия между понятиями «данные» и «знания».

Информация – совокупность сведений, воспринимаемых из окружающей среды, выдаваемых в окружающую среду либо сохраняемых внутри информационной системы (ИС).

Данные – представленная в формализованном виде конкретная информация об объектах предметной области, их свойствах и взаимосвязях, отражающая события и ситуации в этой области.

Данные представляются в виде, позволяющем автоматизировать их сбор, хранение и дальнейшую обработку. Данные – это запись информации в соответствующем виде, пригодном для хранения, передачи, обработки и получения новой информации.

Информация, с которой имеет дело ЭВМ, разделяется на процедурную и декларативную.

Процедурная информация представляется программами, которые выполняются в процессе решения задач, а декларативная – данными, которые обрабатывают эти программы.

Любая интеллектуальная деятельность опирается на знания о предметной области, в которой ставятся и решаются задачи.

Предметной областью называют совокупность взаимосвязанных сведений, необходимых и достаточных для решения определенного множества задач. Знания о предметной области включают описания объектов, явлений, фактов, а также отношений между ними.

Знания – это обобщенная и формализованная информация о свойствах и законах предметной области, с помощью которой реализуются процессы решения задач, преобразования данных и самих знаний, и которая используется в процессе логического вывода.

Логический вывод – это генерирование новых утверждений (суждений) на основе исходных фактов, аксиом и правил вывода.

Знания с точки зрения решаемых задач в некоторой предметной области делят на 2 большие категории - факты и эвристики. Под фактами обычно понимают общеизвестные в данной предметной области истины, обстоятельства. Эвристики – это эмпирические алгоритмы, основанные на неформальных соображениях, которые ограничивают число вариантов решения и обеспечивают целенаправленность поведения решающей системы, не гарантируя, однако, получения наилучшего решения. Такие знания основаны на опыте специалиста (эксперта) в данной предметной области.

Со знаниями тесто связано понятие процедуры получения решений задач (стратегии обработки знаний). В ИИС такую процедуру называют механизмом вывода , логическим выводом или машиной вывода .

Знания, с которыми работает система, хранятся в базе знаний (БЗ).

Для организации взаимодействия с ИИС в ней должны быть средства общения с пользователем, т.е. интерфейс . Интерфейс обеспечивает работу с БЗ и механизмом вывода на языке достаточно высокого уровня, приближенном к профессиональному языку специалистов в той предметной области, к которой относится ИИС. Кроме того, в функции интерфейса входит поддержка диалога пользователя с системой, позволяющего пользователю получать объяснения действий системы, участвовать в поиске решения задачи, пополнять и корректировать базу знаний. Таким образом, основными частями ИИС являются:

База знаний,

Механизм вывода,

Интерфейс с пользователем.

Особенности знаний, отличающие их от данных

Пример . Пусть в качестве предметной области выступают родственные связи. Объектами этой предметной области являются такие понятия, как мать,

отец, дочь, мужчина, женщина и т.п.

Пусть известны факты:

Виктор является отцом Тани.

Владимир является отцом Виктора.

На языке Пролог эти факты описываются следующим образом:

отец (виктор, таня).

отец (владимир, виктор).

Здесь «отец» является именем отношения или предикатом, а «виктор», «таня» и «владимир» - константами.

Пусть X , Y , Z – переменные. Используя переменные X и Z , можно в общем случае записать отношение «X является отцом Z » на языке Пролог:

отец (X , Z ).

Используя предикат «отец» и переменные X , Y , Z , сформулируем новое отношение «дед», а именно:

Если X является отцом Z и

Z является отцом Y

то X является дедом Y .

Такая форма записи отношения «Если.…То» называется продукционным правилом , продукцией или просто правилом .

На языке Пролог отношения «дед» записывается следующим образом:

дед (X , Y ): – отец (X , Z ), отец (Z , Y ).

Символ « : – » интерпретируется как «Если».

На примере отношения «дед» сформулирована общая закономерность определения понятия «дед» через понятие «отец». Имя «владимир», взятое вне зависимости от отношения, ни о чем не свидетельствует. Возможно это имя человека или наименование города. Точно так же рассматриваются числовые или другие данные, например, в файле данных. Данное, взятое вместе с отношением, определяет некоторый смысл и таким образом представляет собой знание.

Рассмотрим особенности знаний, в которых заключается их отличие от данных.

1. Интерпретируемость . Данные, хранимые в памяти ЭВМ, могут интерпретироваться только соответствующей программой. Данные без программы не несут никакой информации, в то время как знания имеют интерпретацию, так как они содержат одновременно и данные, и соответствующие им имена, описания, отношения, т.е. вместе с данными представлены информационные структуры, которые позволяют не только хранить знания, но и использовать их.

Лучшие статьи по теме