Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Новости
  • Мощный умзч на полевых транзисторах. Качественный умзч на транзисторах Источник питания для умзч

Мощный умзч на полевых транзисторах. Качественный умзч на транзисторах Источник питания для умзч

С. САКЕВИЧ, г. Луганск
Радио, 2000 год, № 11, 12

Описываемый усилитель предназначен для двухканального усиления мощности сигнала, подаваемого с микшерного пульта или предварительного усилителя. Каждый из двух входов имеет регулятор уровня входного сигнала, позволяющий установить необходимую чувствительность. Переключателем можно объединять его входы, при этом один из двух входных разъемов можно использовать как линейный выход для увеличения числа работающих параллельно усилителей. К особенностям УМЗЧ можно отнести переключаемый фактор демпфирования громкоговорителей для оптимизации их звучания в различных акустических условиях.

Основные технические характеристики

Номинальное входное напряжение. В.................1,1
Номинальная выходная мощность каждого из двух каналов, Вт,
при Кг = 1% и сопротивлении нагрузки
4 0м....................400
8 0м....................220
Диапазон рабочих частот, Гц, при неравномерности -0.5 дБ...............20...20000
Скорость нарастания выходного сигнала, В/мкс........25
Коэффициент гармонических искажений сигнала с уровнем 1 дБ, %, не более
на частоте 1 кГц..........0,01
в рабочем диапазоне частот.. .0,1
Отношение сигнал/шум+фон, дБ..........96
Предельно допустимое отклонение напряжения в сети, В...............170...270
Минимальное сопротивление нагрузки. Ом.............2.5
Габаритные размеры, мм..........................430х90х482
Масса, кг, не более..............16

Усилитель имеет индикаторы уровня выходного сигнала и его ограничения, перегрузки по выходу, а также индикаторы аварийного отключения громкоговорителей и превышения напряжения сети.

На рис. 1 приведена схема правого канала усилителя и узла защиты нагрузки.

на входе УМЗЧ применен ОУ КР544УД2А. а цепи C4R4 и R1C3 ограничивают полосу усиливаемых частот. Они уменьшают проникновение в УМ колебаний инфра- и ультразвуковых частот, способных привести к перегрузке усилителя и динамических головок. Усилитель напряжения на VT1 - VT4 аналогичен примененному в . Выход ОУ соединен с эмиттерным повторителем VT3, который совместно с цепью R6C15 выполняет функции преобразователя напряжение-ток. Этот ток поступает через каскад с ОБ на VT2 к усилителю напряжения на VT1.

Далее структура усилителя практически симметрична: нагрузкой транзистора VT1 является генератор тока на VT4, входная цепь последующего каскада усилителей тока, а также резистор R12, стабилизирующий сопротивление нагрузки для VT1. Это сделано с целью некоторого уменьшения общего усиления и увеличения устойчивости усилителя при замкнутой цепи ООС. Последующий усилитель тока выполнен трехступенчатым: VT5, VT10. далее - VT11, VT17 и затем VT12 - VT16, VT18 - VT22 (в каждом плече по пять параллельно включенных транзисторов).

Узел защиты от короткого замыкания (КЗ) в нагрузке выполнен на транзисторах VT6, VT7 и VT8. VT9. включенных по схеме аналога тиристора, для верхнего и нижнего плеча соответственно. В выключенном состоянии этот узел не оказывает влияния на выходной каскад. При возникновении условий для срабатывания защиты транзисторы соответствующего плеча выходного каскада полностью закрываются. Таким образом, ток потребления УМ при КЗ и номинальном входном напряжении будет даже меньше, чем в режиме холостого хода, поэтому при КЗ на выходе усилитель мощности не выходит из строя.

Резистор R14 необходим для корректной работы защиты от КЗ. К примеру, при перегрузке верхнего по схеме плеча открываются транзисторы VT6. VT7 и остаточное напряжение на базе VT5 относительно выхода не превышает 0.8 В. Если этого резистора нет, то напряжение смещения на диодах (примерно 2,6 В) приведет к увеличению напряжения смещения для нижнего плеча выходного каскада и его отпирания.

В отличие от других устройств защиты с выключением выходных транзисторов , предлагаемый узел автоматически возвращается в исходное состояние при восстановлении нагрузки сопротивлением 2,5...16 Ом и подаче на вход усилителя полезного сигнала с уровнем 25% от номинального и выше. Цепи R18C13 и R19C14 устраняют возможность ложного срабатывания защиты из-за сдвига фазы тока в нагрузке вследствие ее реактивного характера.

Для увеличения кликните по изображению (откроется в новом окне)

В выходном каскаде транзисторы предоконечной ступени работают в режиме АВ с током покоя около 100 мА, определяемого напряжением смещения на диодах VD9-VD12 и резисторами R24, R35. Относительно небольшое их сопротивление позволяет этой ступени работать в режиме малого сигнала непосредственно на нагрузку и сокращает время разрядки емкости Сбэ транзисторов оконечной ступени, снижая ее коммутационные искажения. Эти транзисторы работают в режиме В, поэтому для них не требуется цепей термокомпенсации и регулировки тока покоя.

Индикатор ограничения выходного сигнала и КЗ на выходе питается импульсами отрицательной полярности на выходе ОУ DA1, возникающими вследствие разрыва петли ОС при ограничении выходного сигнала или срабатывания узла защиты.

Устройство задержки подключения нагрузки и отключения ее при появлении постоянного напряжения на выходе усилителей выполнено общим для обоих каналов. При включении питания конденсатор С19 заряжается через резистор R49. обеспечивая задержку открывания транзисторов VT25, VT27 и включения реле К1 на 2 с. При появлении постоянного напряжения на выходе одного из усилителей при положительной полярности откроется транзистор VT23, а в случае отрицательной - VT24, запирая транзисторы VT25, VT27 и выключая реле.

Отключение громкоговорителей производится узлом защиты и при увеличении напряжения в сети выше 250 В (VT26. VD17-VT19. R51-R53). Как показывает практика, превышение питающего напряжения бывает гораздо чаще, чем можно предполагать. При повышении напряжения питания узла защиты ток, текущий через стабилитроны VD17-VD19, открывает транзистор VT26, в результате включается индикация превышения напряжения сети и открывается транзистор VT23, что приводит к отключению нагрузки. Продолжение работы возможно после перевода переключателя напряжения сети в положение "250 В".

Схема источника питания, блока индикации и межблочных соединений обоих каналов показана на рис. 2. Нумерация межблочных соединений платы УМ и защиты АС, а также платы индикаторов соответствует нумерации выводов контактных площадок на соответствующих рисунках размещения элементов на печатных платах. Каждый из двух входов усилителя имеет регулятор уровня входного сигнала (переменные резисторы R1, R2), позволяющий установить необходимую чувствительность. Кнопочным переключателем SB1 можно объединять его входы.

В УМЗЧ возможно переключение степени демпфирования громкоговорителей, используемых в различных акустических условиях. При переводе усилителя в режим высокого выходного сопротивления (кнопка переключателя SB2 "Вых. Н/В" нажата) выходное сопротивление усилителя повышается до 8... 10 Ом за счет введения в усилителе обратной связи по току с резисторов R3, R4. Это. как показывает практика, - оптимальная величина для большинства громкоговорителей. Однако ее легко изменить в любую сторону подбором резистора R2 на плате усилителей.

Заметим, что режим повышенного выходного сопротивления заметно повышает надежность работы АС. Дело в том, что повышение выходного сопротивления усилителя способствует понижению активных потерь в громкоговорителе, что позволяет более полно использовать его возможности и, кроме того, заметно снизить интермодуляционные искажения . Режим повышенного выходного сопротивления также уменьшает сдвиг фазы тока в выходном каскаде относительно входного сигнала.

Усилитель оснащен индикаторами контроля режима работы. Это индикаторы включения питающей сети (HL9), аварийного отключения громкоговорителей (HL7) и индикатор HL8. свидетельствующий о принудительном отключении нагрузки вследствие опасного превышения напряжения питания. Индикаторы уровня сигнала HL2 и HL3. HL5 и HL6 имеют пороговые значения 5, 20 дБ, а также показывают его ограничение (светодиоды HL1, HL4) для каждого канала отдельно. Кроме ограничения, те же индикаторы сигнализируют о коротком замыкании на выходе какого-либо канала (при отсутствии свечения остальных индикаторов уровня).

Блок питания усилителя максимально упрощен. Питание собственно УМЗЧ производится от выпрямителя с напряжением 70 В, для блока защиты и индикации используется свой выпрямитель, подключаемый к отдельной обмотке трансформатора питания. Вентиляторы Ml, М2 предназначены для обдува теплоотводов мощных транзисторов.

Пояснения требует, видимо, и назначение выключателя SB5: в системе звукоусиления его устанавливают в положение, при котором достигается минимальный фон от наводок питающей сети.

Конструкция и детали

Внешний вид усилителя показан на рис. 3 (со стороны задней панели). Основные его узлы размещены на металлическом шасси с крышкой. На передней панели с щелевыми отверстиями установлены вентиляторы для принудительного обдува теплоотводов мощных транзисторов усилителя, а также плата индикации режимов работы. На задней панели установлены соединители для присоединения сигнальных кабелей и трехпроводного кабеля питания, переключатели предельного напряжения сети и фактора демпфирования громкоговорителей, держатель плавкого предохранителя.

Монтаж усилителя выполнен в основном на трех платах - плате усилителей, плате индикации и плате выпрямителя питания. На плате усилителей расположены два канала УМ с теплоотводами выходных транзисторов и узел защиты громкоговорителей. Печатная плата (ее размеры 355x263 мм) и расположение элементов, которые принято изображать в журнале в натуральную величину, приведены на рис. 4 (с. 40,41) в масштабе 85%.

Для увеличения кликните по изображению (откроется в новом окне)

В узле защиты нагрузки можно применить реле РП21, имеющее четыре группы контактов (по два параллельно), либо РЭК34 или аналогичное с напряжением срабатывания 24 В. В качестве теплоот-водов применены "радиаторы" типа Р1 производства Винницкого ПО "Маяк" (ТУ 8.650.022) с фрезерованными площадками для установки двух мощных транзисторов (КТ8101А или КТ8102А) на каждый.

Теплоотводы охлаждаются с помощью вытяжной вентиляции двумя вентиляторами ВВФ71. установленными за передней панелью усилителя. Крайне нежелательно устанавливать их на задней панели ввиду большого уровня наводок от их двигателей.

Конструкция платы позволяет также применить самодельные теплоотводы на шесть транзисторов (для каждого плеча) с теплоот-водящей поверхностью не менее 600 см и принудительном охлаждением. Плата усилителей размещена в корпусе самого усилителя так. что сигнальные входы и выходы обоих каналов располагаются со стороны задней панели.

Как уже указывалось, усилитель имеет переключаемый фактор демпфирования, реализованный включением петли ООО потоку. Резисторы R3. R4 на рис. 2 - датчики тока нагрузки, используемые для изменения фактора демпфирования, выполнены из десяти параллельно включенных резисторов МЛТ-0.5 сопротивлением 1 Ом. Применение проволочных резисторов нежелательно.

Дроссель L1 (см. рис. 1) намотан непосредственно на резисторе R55 МЛТ-2 проводом ПЭВ-2 0.8 мм в один слой (до заполнения). Блокировочные конденсаторы - К73-11. в фильтре питания - К50-18. Трансформатор питания выполнен на ленточном магнитопроводе типа ШЛ40Х45 мм. Его намоточные данные приведены в таблице.

Транзисторы выходного каскада КТ8101А и КТ8102А необходимо отобрать по коэффициенту усиления - не менее 25 и не более 60, а главное - по предельному напряжению и^дол- Для определения этого параметра необходимо собрать несложное устройство, состоящее из выпрямителя переменного напряжения до 300...350 В, резистора сопротивлением 24...40 кОм (мощностью 2 Вт) и вольтметра с пределом 500 В (рис. 5). Транзистор с замкнутыми выводами базы и эмиттера подключают через токоогра-ничивающий резистор к источнику. Вольтметр, подключенный параллельно транзистору, фиксирует при этом напряжение лавинного пробоя проверяемого транзистора, которое и будет для него предельным. Транзисторы следует отбирать с напряжением пробоя не менее 250 В. Игнорирование этого требования может привести к выходу из строя усилителя в процессе эксплуатации.

Плату выпрямителя питания (она приведена на рис. 6 в масштабе 1:2) устанавливают на выводы конденсаторов фильтра выпрямителя и закрепляют соответствующими винтами.

Для увеличения кликните по изображению (откроется в новом окне)

Монтаж общего провода и цепей питания производят многожильным проводом сечением 1.2 мм2. Кроме того, монтаж общего провода от выпрямителей к плате усилителей и узлу отключения нагрузки выполняется отдельными максимально короткими проводами.

На рис. 7 приведены рисунок печатной платы индикаторов и расположение элементов. Светодиоды устанавливают таким образом, чтобы их торцы немного выступали на поверхности передней панели усилителя.

ВКЛЮЧЕНИЕ И НАСТРОЙКА

Для настройки усилителя потребуются осциллограф, генератор 3Ч. автотрансформатор ЛАТР на напряжение 0 - 250 В при токе нагрузки до 2 А и резистивные эквиваленты нагрузки. Усилитель подключают к выходным клеммам автотрансформатора через вспомогательный кабель, обеспечивающий возможность подключения в цепь питания вольтметра и амперметра переменного тока.

Вначале следует установить переключатель сетевого напряжения в положение "220 В" и проверить работу блока питания, затем - работу узла защиты нагрузки путем подачи постоянного напряжения 2...3 В (поочередно разной полярности) на левый по схеме вывод резисторов R47 или R48. Удостоверившись в работоспособности узла, нужно выставить подстроенным резистором R52 порог отключения нагрузки при увеличении напряжения сети до 250 В и выше.

Следующий этап - самый ответственный. Подключив по цепям ±70 В один из каналов усилителя (питание от сети надо подавать через плавкий предохранитель с предельным током не более 1 А) и контролируя ток потребления амперметром, а выходной сигнал - осциллографом, нужно очень медленно повышать напряжение питания с автотрансформатора от нуля до номинального. Ток потребления выходного каскада не должен превышать 250 мА, в противном случае следует немедленно отключить питание и тщательно проверить монтаж.

Вначале на выходе усилителя появится постоянное напряжение положительной полярности. При достижении его значения примерно половины от номинального напряжения питания выходное напряжение скачком окажется близким к нулю вследствие включения действия ООС. Падение напряжения на резисторах R24 и R25 должно составлять 200...250 мВ, что соответствует току покоя транзисторов VT11, VT17 в пределах 60...85 мА. При необходимости подбирают диоды VD9-VD12 или один из VD9 - VD11 заменяют германиевым.

После этого проверяют работу УМЗЧ без нагрузки от генератора 3Ч. Установив частоту 1...2 кГц, плавно увеличивают сигнал на входе усилителя и убеждаются ь том. что амплитуда его выходного напряжения составляет не менее 50 В. Индикатор перегрузки должен зажигаться с началом ограничения выходного сигнала. Далее, заменив предохранитель другим (на ток 5 - 7 А), по осциллографу наблюдают работу усилителя под нагрузкой на мощный резистор сопротивлением вначале 8, а затем - 4 Ом. Амплитуда неограниченного сигнала должна составлять не менее 46 и 42 В соответственно. Возможное в некоторых случаях возбуждение на ВЧ устраняют подбором конденсаторов С9, СЮ. С15, а при заменах мощных транзисторов - и C11, С12.

Проверку работы в режиме повышенного выходного сопротивления надо производить при нагрузке сопротивлением 4 Ом: именно при такой нагрузке сигнал с датчика тока примерно равен входному и не возникает заметного изменения коэффициента усиления. Если после включения этого режима обнаружится самовозбуждение, нужно увеличить емкость конденсатора С10 фазовой коррекции в цепи ООС.

Далее нужно убедиться в работоспособности узла защиты от короткого замыкания в цепи нагрузки (эту проверку лучше проводить в режиме низкого выходного сопротивления). Для этого следует вначале при нагрузке сопротивлением 8 Ом и размахе выходного напряжения 20...30 В перемкнуть базы VT6, VT7. а затем и VT8, VT9. При этом на осциллограмме выходного сигнала должны "отсекаться" положительная и отрицательная полуволны соответственно.

После этой процедуры нужно проверить реакцию усилителя на нагрузку сопротивлением 0,33 Ом и мощностью 3 - 6 Вт, имитирующую короткое замыкание. Убрать входной сигнал, подключить в цепь питания одного из плеч амперметр, к выходу - вольтметр. Подключив эту нагрузку к выходу, медленно увеличивать входное напряжение, контролируя выходное напряжение, потребляемый ток и форму сигнала. При уровне выходного напряжения 2.1...2,3 В должна сработать защита для одного плеча (обычно верхнего по схеме, форма сигнала показана на рис. 8,а), при дальнейшем увеличении напряжения сработает защита для другого плеча (рис. 8,6). Ток потребления при этом должен упасть до 160...200 мА. После этого проверку работы УМЗЧ можно считать законченной.

Транзисторы в оконечной ступени выходного каскада усилителя работают практически без начального смещения. Перевод их в режим класса АВ позволяет примерно в 6...8 раз снизить нелинейные искажения на высоких частотах. Наиболее простой вариант узла смещения показан на рис. 9. Его включают вместо четырех диодов смещения, точка "А" - к коллектору VT1. точка "В" - к коллектору VT4. Резистор R12 в этом случае также исключается. Тррмодатчик (транзистор VT28) устанавливают на теплоотводе как можно ближе к мощному транзистору выходного каскада, находящемуся в наихудших условиях охлаждения. Применяя этот узел, необходимо увеличить сопротивление резисторов R24, R35 до 12 - 15 Ом.

Регулировка тока покоя состоит в следующем. Вначале движок переменного резистора R58 выводят в верхнее по схеме положение. Попав питание, устанавливают ток покоя 150...180 мА. После этого при подключенной нагрузке и номинальном выходном напряжении усилитель прогревают в течение 10...15 мин. Вновь измеряют ток покоя. Если он ниже первоначального, нужно немного увеличить сопротивление R60 в цепи эмиттера VT28 и повторять процедуру настройки до получения примерно одинакового тока покоя в холодном и горячем состояниях. Недостатки данного узла - наличие подстроечного резистора и большая инерционность тепловой цепи ООС.

От этих недостатков свободно устройство автоматического регулирования тока покоя по схеме, показанной на рис. 10. Принцип его действия заключается в измерении падения напряжения на резисторах R63, R64 - датчиках тока покоя выходных транзисторов, с последующим управлением током транзисторов оптопары U1, включенных вместо смещающих диодов. При достаточно большом сигнале транзисторы VT29 и VT30 работают практически поочередно: когда один из ник находится в состоянии насыщения, другой - в активном состоянии, управляя оптопарой и током покоя. И наоборот. Настройки узел не требует, однако возможна коррекция тока покоя подбором резистора R58. После включения питания ток покоя УМЗЧ в течение 8...10 с равен нулю, а затем плавно увеличивается до нормы. В усилителе с авторегулированием тока покоя сопротивление резисторов R24, R35 можно увеличить до 12- 15 Ом.

В усилителе возможно ввести плавную регулировку выходного сопротивления. Для этого достаточно переключатель демпфирования SB2 заменить сдвоенным переменным резистором сопротивлением 2...4 кОм и уменьшить сопротивление R2 до 100 Ом для расширения диапазона регулировки выходного сопротивления (в сторону увеличения).

Мощные транзисторы выходного каскада можно заменить на 2SC3281 и 2SA1302. 2SA1216 и 2SC2922, 2SA1294 и 2SC3263 (в этом случае отбор транзисторов производить не обязательно). КТ940А и КТ9П5А можно заменить на КТ851 и КТ850 с любым буквенным индексом.

ЛИТЕРАТУРА
1. Клецов В. Усилитель НЧ с малыми искажениями. - Радио, 1983. № 7. с. 51- 53.
2. Сухов Н. УМЗЧ высокой верности. - Радио. 1989. № 6. с. 55 - 57.
3. Зуев П. Усилитель с многопетлевой ООС. - Радио. 1984. № 11. с. 29-32.
4. Агеев С. Должен ли УМЗЧ иметь малое выходное сопротивление? - Радио. 1997, № 4, с. 14-16.

Представляем схему усилителя повышенной мощности, собранного на импортных транзисторах 2SC5200 и 2SA1943. При указанном питании схема развивает мощность 500 ватт на нагрузку 4 ома. Возможно также повысить мощность поднятием питания УМЗЧ.

Автор схемы предлагает два варианта схемы. Первая схема на 300 ватт - ее мы рассмотрим в других статьях, а пока остановимся на второй схеме усилителя, мощность которой при питании 100 вольт достигает до киловатта!

Технические параметры усилителя: Выходная мощность: 500Вт/4Ом, 250Вт/8Ом. Минимальное сопротивление динамика: 2 Ома. Частотный диапазон: 10-20000Гц/-3dB. Общие гармонические искажения, шум, менее 0.06%. Максимально допустимое напряжение УНЧ: 100В.

В выходных каскадах рекомендовано применить высококачественные биполярные транзисторы серии 2SC5200 и 2SA1943 производства Toshiba. Для такого мощного усилителя нужны мощные теплоотводы, они расположены по бокам платы, имеют высоту 70 мм, ширину 45 мм и длиной 270мм.

Ток покоя транзисторов регулируется переменным резистором 2.2кОм. Для начала следует подключить только один из выходных каскадов, после того, как усилитель заработал, уже можно припаять все остальные транзисторы Ток покоя транзисторов устанавливается 30 мА для каждого из транзисторов выходного каскада.

Для питания такого устройства нужен мощный источник не менее 1 киловатт (1000 ватт). Как вы поняли, такой усилитель предназначен для концертных динамиков, но возможно найдутся меломаны, которые захотят питать киловаттовый сабвуфер дома и устроить локальное землетрясение, а такая мощность вполне способна на это!

– Сосед запарил по батарее стучать. Сделал музыку громче, чтобы его не слышать.
(Из фольклора аудиофилов).

Эпиграф иронический, но аудиофил совсем не обязательно «больной на всю голову» с физиономией Джоша Эрнеста на брифинге по вопросам отношений с РФ, которого «прёт» оттого, что соседи «счастливы». Кто-то хочет слушать серьезную музыку дома как в зале. Качество аппаратуры для этого нужно такое, какое у любителей децибел громкости как таковых просто не помещается там, где у здравомыслящих людей ум, но у последних оный за разум заходит от цен на подходящие усилители (УМЗЧ, усилитель мощности звуковой частоты). А у кого-то попутно возникает желание приобщиться к полезным и увлекательным сферам деятельности – технике воспроизведения звука и вообще электронике. Которые в век цифровых технологий неразрывно связаны и могут стать высокодоходной и престижной профессией. Оптимальный во всех отношениях первый шаг в этом деле – сделать усилитель своими руками: именно УМЗЧ позволяет с начальной подготовкой на базе школьной физики на одном и том же столе пройти путь от простейших конструкций на полвечера (которые, тем не менее, неплохо «поют») до сложнейших агрегатов, через которые с удовольствием сыграет и хорошая рок-группа. Цель данной публикации – осветить первые этапы этого пути для начинающих и, возможно, сообщить кое-что новое опытным.

Простейшие

Итак, для начала попробуем сделать усилитель звука, который просто работает. Чтобы основательно вникнуть в звукотехнику, придется постепенно освоить довольно много теоретического материала и не забывать по мере продвижения обогащать багаж знаний. Но любая «умность» усваивается легче, когда видишь и щупаешь, как она работает «в железе». В этой статье далее тоже без теории не обойдется – в том, что нужно знать поначалу и что возможно пояснить без формул и графиков. А пока достаточно будет умения и пользоваться мультитестером.

Примечание: если вы до сих пор не паяли электронику, учтите – ее компоненты нельзя перегревать! Паяльник – до 40 Вт (лучше 25 Вт), максимально допустимое время пайки без перерыва – 10 с. Паяемый вывод для теплоотвода удерживается в 0,5-3 см от места пайки со стороны корпуса прибора медицинским пинцетом. Кислотные и др. активные флюсы применять нельзя! Припой – ПОС-61.

Слева на рис. – простейший УМЗЧ, «который просто работает». Его можно собрать как на германиевых, так и на кремниевых транзисторах.

На этой крошке удобно осваивать азы наладки УМЗЧ с непосредственными связями между каскадами, дающими наиболее чистый звук:

  • Перед первым включением питания нагрузку (динамик) отключаем;
  • Вместо R1 впаиваем цепочку из постоянного резистора на 33 кОм и переменного (потенциометра) на 270 кОм, т.е. первый прим. вчетверо меньшего, а второй прим. вдвое большего номинала против исходного по схеме;
  • Подаем питание и, вращая движок потенциометра, в точке, обозначенной крестиком, выставляем указанный ток коллектора VT1;
  • Снимаем питание, выпаиваем временные резисторы и замеряем их общее сопротивление;
  • В качестве R1 ставим резистор номинала из стандартного ряда, ближайшего к измеренному;
  • Заменяем R3 на цепочку постоянный 470 Ом + потенциометр 3,3 кОм;
  • Так же, как по пп. 3-5, в т. а выставляем напряжение, равное половине напряжения питания.

Точка а, откуда снимается сигнал в нагрузку это т. наз. средняя точка усилителя. В УМЗЧ с однополярным питанием в ней выставляют половину его значения, а в УМЗЧ в двухполярным питанием – ноль относительно общего провода. Это называется регулировкой баланса усилителя. В однополярных УМЗЧ с емкостной развязкой нагрузки отключать ее на время наладки не обязательно, но лучше привыкать делать это рефлекторно: разбалансированный 2-полярный усилитель с подключенной нагрузкой способен сжечь свои же мощные и дорогие выходные транзисторы, а то и «новый, хороший» и очень дорогой мощный динамик.

Примечание: компоненты, требующие подбора при наладке устройства в макете, на схемах обозначаются или звездочкой (*), или штрихом-апострофом (‘).

В центре на том же рис. – простой УМЗЧ на транзисторах, развивающий уже мощность до 4-6 Вт на нагрузке 4 Ом. Хотя и работает он, как и предыдущий, в т. наз. классе AB1, не предназначенном для Hi-Fi озвучивания, но, если заменить парой таких усилитель класса D (см. далее) в дешевых китайских компьютерных колонках, их звучание заметно улучшается. Здесь узнаем еще одну хитрость: мощные выходные транзисторы нужно ставить на радиаторы. Компоненты, требующие дополнительного охлаждения, на схемах обводятся пунктиром; правда, далеко не всегда; иногда – с указанием необходимой рассеивающей площади теплоотвода. Наладка этого УМЗЧ – балансировка с помощью R2.

Справа на рис. – еще не монстр на 350 Вт (как был показан в начале статьи), но уже вполне солидный зверюга: простой усилитель на транзисторах мощностью 100 Вт. Музыку через него слушать можно, но не Hi-Fi, класс работы – AB2. Однако для озвучивания площадки для пикника или собрания на открытом воздухе, школьного актового или небольшого торгового зала он вполне пригоден. Любительская рок-группа, имея по такому УМЗЧ на инструмент, может успешно выступать.

В этом УМЗЧ проявляются еще 2 хитрости: во-первых, в очень мощных усилителях каскад раскачки мощного выхода тоже нужно охлаждать, поэтому VT3 ставят на радиатор от 100 кв. см. Для выходных VT4 и VT5 нужны радиаторы от 400 кв. см. Во-вторых, УМЗЧ с двухполярным питанием совсем без нагрузки не балансируются. То один, то другой выходной транзистор уходит в отсечку, а сопряженный в насыщение. Затем, на полном напряжении питания скачки тока при балансировке способны вывести из строя выходные транзисторы. Поэтому для балансировки (R6, догадались?) усилитель запитывают от +/–24 В, а вместо нагрузки включают проволочный резистор 100…200 Ом. Кстати, закорючки в некоторых резисторах на схеме – римские цифры, обозначающие их необходимую мощность рассеяния тепла.

Примечание: источник питания для этого УМЗЧ нужен мощностью от 600 Вт. Конденсаторы сглаживающего фильтра – от 6800 мкФ на 160 В. Параллельно электролитическим конденсаторам ИП включаются керамические по 0,01 мкФ для предотвращения самовозбуждения на ультразвуковых частотах, способного мгновенно сжечь выходные транзисторы.

На полевиках

На след. рис. – еще один вариант достаточно мощного УМЗЧ (30 Вт, а при напряжении питания 35 В – 60 Вт) на мощных полевых транзисторах:

Звук от него уже тянет на требования к Hi-Fi начального уровня (если, разумеется, УМЗЧ работает на соотв. акустические системы, АС). Мощные полевики не требуют большой мощности для раскачки, поэтому и предмощного каскада нет. Еще мощные полевые транзисторы ни при каких неисправностях не сжигают динамики – сами быстрее сгорают. Тоже неприятно, но все-таки дешевле, чем менять дорогую басовую головку громкоговорителя (ГГ). Балансировка и вообще наладка данному УМЗЧ не требуются. Недостаток у него, как у конструкции для начинающих, всего один: мощные полевые транзисторы много дороже биполярных для усилителя с такими же параметрами. Требования к ИП – аналогичные пред. случаю, но мощность его нужна от 450 Вт. Радиаторы – от 200 кв. см.

Примечание: не надо строить мощные УМЗЧ на полевых транзисторах для импульсных источников питания, напр. компьютерных. При попытках «загнать» их в активный режим, необходимый для УМЗЧ, они или просто сгорают, или звук дают слабый, а по качеству «никакой». То же касается мощных высоковольтных биполярных транзисторов, напр. из строчной развертки старых телевизоров.

Сразу вверх

Если вы уже сделали первые шаги, то вполне естественным будет желание построить УМЗЧ класса Hi-Fi, не вдаваясь слишком глубоко в теоретические дебри. Для этого придется расширить приборный парк – нужен осциллограф, генератор звуковых частот (ГЗЧ) и милливольтметр переменного тока с возможностью измерения постоянной составляющей. Прототипом для повторения лучше взять УМЗЧ Е. Гумели, подробно описанный в «Радио» №1 за 1989 г. Для его постройки понадобится немного недорогих доступных компонент, но качество удовлетворяет весьма высоким требованиям: мощность до 60 Вт, полоса 20-20 000 Гц, неравномерность АЧХ 2 дБ, коэффициент нелинейных искажений (КНИ) 0,01%, уровень собственных шумов –86 дБ. Однако наладить усилитель Гумели достаточно сложно; если вы с ним справитесь, можете браться за любой другой. Впрочем, кое-какие из известных ныне обстоятельств намного упрощают налаживание данного УМЗЧ, см. ниже. Имея в виду это и то, что в архивы «Радио» пробраться не всем удается, уместно будет повторить основные моменты.

Схемы простого высококачественного УМЗЧ

Схемы УМЗЧ Гумели и спецификация к ним даны на иллюстрации. Радиаторы выходных транзисторов – от 250 кв. см. для УМЗЧ по рис. 1 и от 150 кв. см. для варианта по рис. 3 (нумерация оригинальная). Транзисторы предвыходного каскада (КТ814/КТ815) устанавливаются на радиаторы, согнутые из алюминиевых пластин 75х35 мм толщиной 3 мм. Заменять КТ814/КТ815 на КТ626/КТ961 не стоит, звук заметно не улучшается, но налаживание серьезно затрудняется.

Этот УМЗЧ очень критичен к электропитанию, топологии монтажа и общей, поэтому налаживать его нужно в конструктивно законченном виде и только со штатным источником питания. При попытке запитать от стабилизированного ИП выходные транзисторы сгорают сразу. Поэтому на рис. даны чертежи оригинальных печатных плат и указания по наладке. К ним можно добавить что, во-первых, если при первом включении заметен «возбуд», с ним борются, меняя индуктивность L1. Во-вторых, выводы устанавливаемых на платы деталей должны быть не длиннее 10 мм. В-третьих, менять топологию монтажа крайне нежелательно, но, если очень надо, на стороне проводников обязательно должен быть рамочный экран (земляная петля, выделена цветом на рис.), а дорожки электропитания должны проходить вне ее.

Примечание: разрывы в дорожках, к которым подключаются базы мощных транзисторов – технологические, для налаживания, после чего запаиваются каплями припоя.

Налаживание данного УМЗЧ много упрощается, а риск столкнуться с «возбудом» в процессе пользования сводится к нулю, если:

  • Минимизировать межблочный монтаж, поместив платы на радиаторах мощных транзисторов.
  • Полностью отказаться от разъемов внутри, выполнив весь монтаж только пайкой. Тогда не нужны будут R12, R13 в мощном варианте или R10 R11 в менее мощном (на схемах они пунктирные).
  • Использовать для внутреннего монтажа аудиопровода из бескислородной меди минимальной длины.

При выполнении этих условий с возбуждением проблем не бывает, а налаживание УМЗЧ сводится к рутинной процедуре, описанной на рис.

Провода для звука

Аудиопровода не досужая выдумка. Необходимость их применения в настоящее время несомненна. В меди с примесью кислорода на гранях кристаллитов металла образуется тончайшая пленочка окисла. Оксиды металлов полупроводники и, если ток в проводе слабый без постоянной составляющей, его форма искажается. По идее, искажения на мириадах кристаллитов должны компенсировать друг друга, но самая малость (похоже, обусловленная квантовыми неопределенностями) остается. Достаточная, чтобы быть замеченной взыскательными слушателями на фоне чистейшего звука современных УМЗЧ.

Производители и торговцы без зазрения совести подсовывают вместо бескислородной обычную электротехническую медь – отличить одну от другой на глаз невозможно. Однако есть сфера применения, где подделка не проходит однозначно: кабель витая пара для компьютерных сетей. Положить сетку с длинными сегментами «леварем», она или вовсе не запустится, или будет постоянно глючить. Дисперсия импульсов, понимаешь ли.

Автор, когда только еще пошли разговоры об аудиопроводах, понял, что, в принципе, это не пустая болтовня, тем более, что бескислородные провода к тому времени уже давно использовались в технике спецназначения, с которой он по роду деятельности был хорошо знаком. Взял тогда и заменил штатный шнур своих наушников ТДС-7 самодельным из «витухи» с гибкими многожильными проводами. Звук, на слух, стабильно улучшился для сквозных аналоговых треков, т.е. на пути от студийного микрофона до диска нигде не подвергавшихся оцифровке. Особенно ярко зазвучали записи на виниле, сделанные по технологии DMM (Direct Meta lMastering, непосредственное нанесение металла). После этого межблочный монтаж всего домашнего аудио был переделан на «витушный». Тогда улучшение звучания стали отмечать и совершенно случайные люди, к музыке равнодушные и заранее не предуведомленные.

Как сделать межблочные провода из витой пары, см. след. видео.

Видео: межблочные провода из витой пары своими руками

К сожалению, гибкая «витуха» скоро исчезла из продажи – плохо держалась в обжимаемых разъемах. Однако, к сведению читателей, только из бескислородной меди делается гибкий «военный» провод МГТФ и МГТФЭ (экранированный). Подделка невозможна, т.к. на обычной меди ленточная фторопластовая изоляция довольно быстро расползается. МГТФ сейчас есть в широкой продаже и стоит много дешевле фирменных, с гарантией, аудиопроводов. Недостаток у него один: его невозможно выполнить расцвеченным, но это можно исправить бирками. Есть также и бескислородные обмоточные провода, см. далее.

Теоретическая интермедия

Как видим, уже на первых порах освоения звукотехники нам пришлось столкнуться с понятием Hi-Fi (High Fidelity), высокая верность воспроизведения звука. Hi-Fi бывают разных уровней, которые ранжируются по след. основным параметрам:

  1. Полосе воспроизводимых частот.
  2. Динамическому диапазону – отношению в децибелах (дБ) максимальной (пиковой) выходной мощности к уровню собственных шумов.
  3. Уровню собственных шумов в дБ.
  4. Коэффициенту нелинейных искажений (КНИ) на номинальной (долговременной) выходной мощности. КНИ на пиковой мощности принимается 1% или 2% в зависимости от методики измерений.
  5. Неравномерности амплитудно-частотной характеристики (АЧХ) в полосе воспроизводимых частот. Для АС – отдельно на низких (НЧ, 20-300 Гц), средних (СЧ, 300-5000 Гц) и высоких (ВЧ, 5000-20 000 Гц) звуковых частотах.

Примечание: отношение абсолютных уровней каких-либо величин I в (дБ) определяется как P(дБ) = 20lg(I1/I2). Если I1

Все тонкости и нюансы Hi-Fi нужно знать, занимаясь проектированием и постройкой АС, а что касается самодельного Hi-Fi УМЗЧ для дома, то, прежде чем переходить к таким, нужно четко уяснить себе требования к их мощности, необходимой для озвучивания данного помещения, динамическому диапазону (динамике), уровню собственных шумов и КНИ. Добиться от УМЗЧ полосы частот 20-20 000 Гц с завалом на краях по 3 дБ и неравномерностью АЧХ на СЧ в 2 дБ на современной элементной базе не составляет больших сложностей.

Громкость

Мощность УМЗЧ не самоцель, она должна обеспечивать оптимальную громкость воспроизведения звука в данном помещении. Определить ее можно по кривым равной громкости, см. рис. Естественных шумов в жилых помещениях тише 20 дБ не бывает; 20 дБ это лесная глушь в полный штиль. Уровень громкости в 20 дБ относительно порога слышимости это порог внятности – шепот разобрать еще можно, но музыка воспринимается только как факт ее наличия. Опытный музыкант может определить, какой инструмент играет, но что именно – нет.

40 дБ – нормальный шум хорошо изолированной городской квартиры в тихом районе или загородного дома – представляет порог разборчивости. Музыку от порога внятности до порога разборчивости можно слушать при наличии глубокой коррекции АЧХ, прежде всего по басам. Для этого в современные УМЗЧ вводят функцию MUTE (приглушка, мутирование, не мутация!), включающую соотв. корректирующие цепи в УМЗЧ.

90 дБ – уровень громкости симфонического оркестра в очень хорошем концертном зале. 110 дБ может выдать оркестр расширенного состава в зале с уникальной акустикой, каких в мире не более 10, это порог восприятия: звуки громче воспринимаются еще как различимый по смыслу с усилием воли, но уже раздражающий шум. Зона громкости в жилых помещениях 20-110 дБ составляет зону полной слышимости, а 40-90 дБ – зону наилучшей слышимости, в которой неподготовленные и неискушенные слушатели вполне воспринимают смысл звука. Если, конечно, он в нем есть.

Мощность

Расчет мощности аппаратуры по заданной громкости в зоне прослушивания едва ли не основная и самая трудная задача электроакустики. Для себя в условиях лучше идти от акустических систем (АС): рассчитать их мощность по упрощенной методике, и принять номинальную (долговременную) мощность УМЗЧ равной пиковой (музыкальной) АС. В таком случае УМЗЧ не добавит заметно своих искажений к таковым АС, они и так основной источник нелинейности в звуковом тракте. Но и делать УМЗЧ слишком мощным не следует: в таком случае уровень его собственных шумов может оказаться выше порога слышимости, т.к. считается он от уровня напряжения выходного сигнала на максимальной мощности. Если считать совсем уж просто, то для комнаты обычной квартиры или дома и АС с нормальной характеристической чувствительностью (звуковой отдачей) можно принять след. значения оптимальной мощности УМЗЧ:

  • До 8 кв. м – 15-20 Вт.
  • 8-12 кв. м – 20-30 Вт.
  • 12-26 кв. м – 30-50 Вт.
  • 26-50 кв. м – 50-60 Вт.
  • 50-70 кв. м – 60-100 Вт.
  • 70-100 кв. м – 100-150 Вт.
  • 100-120 кв. м – 150-200 Вт.
  • Более 120 кв. м – определяется расчетом по данным акустических измерений на месте.

Динамика

Динамический диапазон УМЗЧ определяется по кривым равной громкости и пороговым значениям для разных степеней восприятия:

  1. Симфоническая музыка и джаз с симфоническим сопровождением – 90 дБ (110 дБ – 20 дБ) идеал, 70 дБ (90 дБ – 20 дБ) приемлемо. Звук с динамикой 80-85 дБ в городской квартире не отличит от идеального никакой эксперт.
  2. Прочие серьезные музыкальные жанры – 75 дБ отлично, 80 дБ «выше крыши».
  3. Попса любого рода и саундтреки к фильмам – 66 дБ за глаза хватит, т.к. данные опусы уже при записи сжимаются по уровням до 66 дБ и даже до 40 дБ, чтобы можно было слушать на чем угодно.

Динамический диапазон УМЗЧ, правильно выбранного для данного помещения, считают равным его уровню собственных шумов, взятому со знаком +, это т. наз. отношение сигнал/шум.

КНИ

Нелинейные искажения (НИ) УМЗЧ это составляющие спектра выходного сигнала, которых не было во входном. Теоретически НИ лучше всего «затолкать» под уровень собственных шумов, но технически это очень трудно реализуемо. На практике берут в расчет т. наз. эффект маскировки: на уровнях громкости ниже прим. 30 дБ диапазон воспринимаемых человеческим ухом частот сужается, как и способность различать звуки по частоте. Музыканты слышат ноты, но оценить тембр звука затрудняются. У людей без музыкального слуха эффект маскировки наблюдается уже на 45-40 дБ громкости. Поэтому УМЗЧ с КНИ 0,1% (–60 дБ от уровня громкости в 110 дБ) оценит как Hi-Fi рядовой слушатель, а с КНИ 0,01% (–80 дБ) можно считать не искажающим звук.

Лампы

Последнее утверждение, возможно, вызовет неприятие, вплоть до яростного, у адептов ламповой схемотехники: мол, настоящий звук дают только лампы, причем не просто какие-то, а отдельные типы октальных. Успокойтесь, господа – особенный ламповый звук не фикция. Причина – принципиально различные спектры искажений у электронных ламп и транзисторов. Которые, в свою очередь, обусловлены тем, что в лампе поток электронов движется в вакууме и квантовые эффекты в ней не проявляются. Транзистор же прибор квантовый, там неосновные носители заряда (электроны и дырки) движутся в кристалле, что без квантовых эффектов вообще невозможно. Поэтому спектр ламповых искажений короткий и чистый: в нем четко прослеживаются только гармоники до 3-й – 4-й, а комбинационных составляющих (сумм и разностей частот входного сигнала и их гармоник) очень мало. Поэтому во времена вакуумной схемотехники КНИ называли коэффициентом гармоник (КГ). У транзисторов же спектр искажений (если они измеримы, оговорка случайная, см. ниже) прослеживается вплоть до 15-й и более высоких компонент, и комбинационных частот в нем хоть отбавляй.

На первых порах твердотельной электроники конструкторы транзисторных УМЗЧ брали для них привычный «ламповый» КНИ в 1-2%; звук с ламповым спектром искажений такой величины рядовыми слушателями воспринимается как чистый. Между прочим, и самого понятия Hi-Fiтогда еще не было. Оказалось – звучат тускло и глухо. В процессе развития транзисторной техники и выработалось понимание, что такое Hi-Fi и что для него нужно.

В настоящее время болезни роста транзисторной техники успешно преодолены и побочные частоты на выходе хорошего УМЗЧ с трудом улавливаются специальными методами измерений. А ламповую схемотехнику можно считать перешедшей в разряд искусства. Его основа может быть любой, почему же электронике туда нельзя? Тут уместна будет аналогия с фотографией. Никто не сможет отрицать, что современная цифрозеркалка дает картинку неизмеримо более четкую, подробную, глубокую по диапазону яркостей и цвета, чем фанерный ящичек с гармошкой. Но кто-то крутейшим Никоном «клацает фотки» типа «это мой жирный кошак нажрался как гад и дрыхнет раскинув лапы», а кто-то Сменой-8М на свемовскую ч/б пленку делает снимок, перед которым на престижной выставке толпится народ.

Примечание: и еще раз успокойтесь – не все так плохо. На сегодня у ламповых УМЗЧ малой мощности осталось по крайней мере одно применение, и не последней важности, для которого они технически необходимы.

Опытный стенд

Многие любители аудио, едва научившись паять, тут же «уходят в лампы». Это ни в коем случае не заслуживает порицания, наоборот. Интерес к истокам всегда оправдан и полезен, а электроника стала таковой на лампах. Первые ЭВМ были ламповыми, и бортовая электронная аппаратура первых космических аппаратов была тоже ламповой: транзисторы тогда уже были, но не выдерживали внеземной радиации. Между прочим, тогда под строжайшим секретом создавались и ламповые… микросхемы! На микролампах с холодным катодом. Единственное известное упоминание о них в открытых источниках есть в редкой книге Митрофанова и Пикерсгиля «Современные приемно-усилительные лампы».

Но хватит лирики, к делу. Для любителей повозиться с лампами на рис. – схема стендового лампового УМЗЧ, предназначенного именно для экспериментов: SA1 переключается режим работы выходной лампы, а SA2 – напряжение питания. Схема хорошо известна в РФ, небольшая доработка коснулась только выходного трансформатора: теперь можно не только «гонять» в разных режимах родную 6П7С, но и подбирать для других ламп коэффициент включения экранной сетки в ульралинейном режиме; для подавляющего большинства выходных пентодов и лучевых тетродов он или 0,22-0,25, или 0,42-0,45. Об изготовлении выходного трансформатора см. ниже.

Гитаристам и рокерам

Это тот самый случай, когда без ламп не обойтись. Как известно, электрогитара стала полноценным солирующим инструментом после того, как предварительно усиленный сигнал со звукоснимателя стали пропускать через специальную приставку – фьюзер – преднамеренно искажающую его спектр. Без этого звук струны был слишком резким и коротким, т.к. электромагнитный звукосниматель реагирует только на моды ее механических колебаний в плоскости деки инструмента.

Вскоре выявилось неприятное обстоятельство: звучание электрогитары с фьюзером обретает полную силу и яркость только на больших громкостях. Особенно это проявляется для гитар со звукоснимателем типа хамбакер, дающим самый «злой» звук. А как быть начинающему, вынужденному репетировать дома? Не идти же в зал выступать, не зная точно, как там зазвучит инструмент. И просто любителям рока хочется слушать любимые вещи в полном соку, а рокеры народ в общем-то приличный и неконфликтный. По крайней мере те, кого интересует именно рок-музыка, а не антураж с эпатажем.

Так вот, оказалось, что роковый звук появляется на уровнях громкости, приемлемых для жилых помещений, если УМЗЧ ламповый. Причина – специфическое взаимодействие спектра сигнала с фьюзера с чистым и коротким спектром ламповых гармоник. Тут снова уместна аналогия: ч/б фото может быть намного выразительнее цветного, т.к. оставляет для просмотра только контур и свет.

Тем, кому ламповый усилитель нужен не для экспериментов, а в силу технической необходимости, долго осваивать тонкости ламповой электроники недосуг, они другим увлечены. УМЗЧ в таком случае лучше делать бестрансформаторный. Точнее – с однотактным согласующим выходным трансформатором, работающим без постоянного подмагничивания. Такой подход намного упрощает и ускоряет изготовление самого сложного и ответственного узла лампового УМЗЧ.

“Бестрансформаторный” ламповый выходной каскад УМЗЧ и предварительные усилители к нему

Справа на рис. дана схема бестрансформаторного выходного каскада лампового УМЗЧ, а слева – варианты предварительного усилителя для него. Вверху – с регулятором тембра по классической схеме Баксандала, обеспечивающей достаточно глубокую регулировку, но вносящей небольшие фазовые искажения в сигнал, что может быть существенно при работе УМЗЧ на 2-полосную АС. Внизу – предусилитель с регулировкой тембра попроще, не искажающей сигнал.

Но вернемся к «оконечнику». В ряде зарубежных источников данная схема считается откровением, однако идентичная ей, за исключением емкости электролитических конденсаторов, обнаруживается в советском «Справочнике радиолюбителя» 1966 г. Толстенная книжища на 1060 страниц. Не было тогда интернета и баз данных на дисках.

Там же, справа на рис., коротко, но ясно описаны недостатки этой схемы. Усовершенствованная, из того же источника, дана на след. рис. справа. В ней экранная сетка Л2 запитана от средней точки анодного выпрямителя (анодная обмотка силового трансформатора симметричная), а экранная сетка Л1 через нагрузку. Если вместо высокоомных динамиков включить согласующий трансформатор с обычным динамиков, как в пред. схеме, выходная мощность составить ок. 12 Вт, т.к. активное сопротивление первичной обмотки трансформатора много меньше 800 Ом. КНИ этого оконечного каскада с трансформаторным выходом – прим. 0,5%

Как сделать трансформатор?

Главные враги качества мощного сигнального НЧ (звукового) трансформатора – магнитное поле рассеяния, силовые линии которого замыкаются, обходя магнитопровод (сердечник), вихревые токи в магнитопроводе (токи Фуко) и, в меньшей степени – магнитострикция в сердечнике. Из-за этого явления небрежно собранный трансформатор «поет», гудит или пищит. С токами Фуко борются, уменьшая толщину пластин магнитопровода и дополнительно изолируя их лаком при сборке. Для выходных трансформаторов оптимальная толщина пластин – 0,15 мм, максимально допустимая – 0,25 мм. Брать для выходного трансформатора пластины тоньше не следует: коэффициент заполнения керна (центрального стержня магнитопровода) сталью упадет, сечение магнитопровода для получения заданной мощности придется увеличить, отчего искажения и потери в нем только возрастут.

В сердечнике звукового трансформатора, работающего с постоянным подмагничиванием (напр., анодным током однотактного выходного каскада) должен быть небольшой (определяется расчетом) немагнитный зазор. Наличие немагнитного зазора, с одной стороны, уменьшает искажения сигнала от постоянного подмагничивания; с другой – в магнитопроводе обычного типа увеличивает поле рассеяния и требует сердечника большего сечения. Поэтому немагнитный зазор нужно рассчитывать на оптимум и выполнять как можно точнее.

Для трансформаторов, работающих с подмагничиванием, оптимальный тип сердечника – из пластин Шп (просеченных), поз. 1 на рис. В них немагнитный зазор образуется при просечке керна и потому стабилен; его величина указывается в паспорте на пластины или замеряется набором щупов. Поле рассеяния минимально, т.к. боковые ветви, через которые замыкается магнитный поток, цельные. Из пластин Шп часто собирают и сердечники трансформаторов без подмагничивания, т.к. пластины Шп делают из высококачественной трансформаторной стали. В таком случае сердечник собирают вперекрышку (пластины кладут просечкой то в одну, то в другую сторону), а его сечение увеличивают на 10% против расчетного.

Трансформаторы без подмагничивания лучше мотать на сердечниках УШ (уменьшенной высоты с уширенными окнами), поз. 2. В них уменьшение поля рассеяния достигается за счет уменьшения длины магнитного пути. Поскольку пластины УШ доступнее Шп, из них часто набирают и сердечники трансформаторов с подмагничиванием. Тогда сборку сердечника ведут внакрой: собирают пакет из Ш-пластин, кладут полоску непроводящего немагнитного материала толщиной в величину немагнитного зазора, накрывают ярмом из пакета перемычек и стягивают все вместе обоймой.

Примечание: «звуковые» сигнальные магнитопроводы типа ШЛМ для выходных трансформаторов высококачественных ламповых усилителей мало пригодны, у них большое поле рассеяния.

На поз. 3 дана схема размеров сердечника для расчета трансформатора, на поз. 4 конструкция каркаса обмоток, а на поз. 5 – выкройки его деталей. Что до трансформатора для «бестрансформаторного» выходного каскада, то его лучше делать на ШЛМме вперекрышку, т.к. подмагничивание ничтожно мало (ток подмагничивания равен току экранной сетки). Главная задача тут – сделать обмотки как можно компактнее с целью уменьшения поля рассеяния; их активное сопротивление все равно получится много меньше 800 Ом. Чем больше свободного места останется в окнах, тем лучше получился трансформатор. Поэтому обмотки мотают виток к витку (если нет намоточного станка, это маета ужасная) из как можно более тонкого провода, коэффициент укладки анодной обмотки для механического расчета трансформатора берут 0,6. Обмоточный провод – марок ПЭТВ или ПЭММ, у них жила бескислородная. ПЭТВ-2 или ПЭММ-2 брать не надо, у них от двойной лакировки увеличенный наружный диаметр и поле рассеяния будет больше. Первичную обмотку мотают первой, т.к. именно ее поле рассеяния больше всего влияет на звук.

Железо для этого трансформатора нужно искать с отверстиями в углах пластин и стяжными скобами (см. рис. справа), т.к. «для полного счастья» сборка магнитопровода производится в след. порядке (разумеется, обмотки с выводами и наружной изоляцией должны быть уже на каркасе):

  1. Готовят разбавленный вдвое акриловый лак или, по старинке, шеллак;
  2. Пластины с перемычками быстро покрывают лаком с одной стороны и как можно быстрее, не придавливая сильно, вкладывают в каркас. Первую пластину кладут лакированной стороной внутрь, следующую – нелакированной стороной к лакированной первой и т.д;
  3. Когда окно каркаса заполнится, накладывают скобы и туго стягивают болтами;
  4. Через 1-3 мин, когда выдавливание лака из зазоров видимо прекратится, добавляют пластин снова до заполнения окна;
  5. Повторяют пп. 2-4, пока окно не будет туго набито сталью;
  6. Снова туго стягивают сердечник и сушат на батарее и т.п. 3-5 суток.

Собранный по такой технологии сердечник имеет очень хорошие изоляцию пластин и заполнение сталью. Потерь на магнитострикцию вообще не обнаруживается. Но учтите – для сердечников их пермаллоя данная методика неприменима, т.к. от сильных механических воздействий магнитные свойства пермаллоя необратимо ухудшаются!

На микросхемах

УМЗЧ на интегральных микросхемах (ИМС) делают чаще всего те, кого устраивает качество звука до среднего Hi-Fi, но более привлекает дешевизна, быстрота, простота сборки и полное отсутствие каких-либо наладочных процедур, требующих специальных знаний. Попросту, усилитель на микросхемах – оптимальный вариант для «чайников». Классика жанра здесь – УМЗЧ на ИМС TDA2004, стоящей на серии, дай бог памяти, уже лет 20, слева на рис. Мощность – до 12 Вт на канал, напряжение питания – 3-18 В однополярное. Площадь радиатора – от 200 кв. см. для максимальной мощности. Достоинство – способность работать на очень низкоомную, до 1,6 Ом, нагрузку, что позволяет снимать полную мощность при питании от бортовой сети 12 В, а 7-8 Вт – при 6-вольтовом питании, напр., на мотоцикле. Однако выход TDA2004 в классе В некомплементарный (на транзисторах одинаковой проводимости), поэтому звучок точно не Hi-Fi: КНИ 1%, динамика 45 дБ.

Более современная TDA7261 звук дает не лучше, но мощнее, до 25 Вт, т.к. верхний предел напряжения питания увеличен до 25 В. Нижний, 4,5 В, все еще позволяет запитываться от 6 В бортсети, т.е. TDA7261 можно запускать практически от всех бортсетей, кроме самолетной 27 В. С помощью навесных компонент (обвязки, справа на рис.) TDA7261 может работать в режиме мутирования и с функцией St-By (Stand By, ждать), переводящей УМЗЧ в режим минимального энергопотребления при отсутствии входного сигнала в течение определенного времени. Удобства стоят денег, поэтому для стерео нужна будет пара TDA7261 с радиаторами от 250 кв. см. для каждой.

Примечание: если вас чем-то привлекают усилители с функцией St-By, учтите – ждать от них динамики шире 66 дБ не стоит.

«Сверхэкономична» по питанию TDA7482, слева на рис., работающая в т. наз. классе D. Такие УМЗЧ иногда называют цифровыми усилителями, что неверно. Для настоящей оцифровки с аналогового сигнала снимают отсчеты уровня с частотой квантования, не мене чем вдвое большей наивысшей из воспроизводимых частот, величина каждого отсчета записывается помехоустойчивым кодом и сохраняется для дальнейшего использования. УМЗЧ класса D – импульсные. В них аналог непосредственно преобразуется в последовательность широтно-модулированных импульсов (ШИМ) высокой частоты, которая и подается на динамик через фильтр низких частот (ФНЧ).

Звук класса D с Hi-Fi не имеет ничего общего: КНИ в 2% и динамика в 55 дБ для УМЗЧ класса D считаются очень хорошими показателями. И TDA7482 здесь, надо сказать, выбор не оптимальный: другие фирмы, специализирующиеся на классе D, выпускают ИМС УМЗЧ дешевле и требующие меньшей обвязки, напр., D-УМЗЧ серии Paxx, справа на рис.

Из TDAшек следует отметить 4-канальную TDA7385, см. рис., на которой можно собрать хороший усилитель для колонок до среднего Hi-Fi включительно, с разделением частот на 2 полосы или для системы с сабвуфером. Расфильтровка НЧ и СЧ-ВЧ в том и другом случае делается по входу на слабом сигнале, что упрощает конструкцию фильтров и позволяет глубже разделить полосы. А если акустика сабвуферная, то 2 канала TDA7385 можно выделить под суб-УНЧ мостовой схемы (см. ниже), а остальные 2 задействовать для СЧ-ВЧ.

УМЗЧ для сабвуфера

Сабвуфер, что можно перевести как «подбасовик» или, дословно, «подгавкиватель» воспроизводит частоты до 150-200 Гц, в этом диапазоне человеческие уши практически не способны определить направление на источник звука. В АС с сабвуфером «подбасовый» динамик ставят в отельное акустическое оформление, это и есть сабвуфер как таковой. Сабвуфер размещают, в принципе, как удобнее, а стереоэффект обеспечивается отдельными СЧ-ВЧ каналами со своими малогабаритными АС, к акустическому оформлению которых особо серьезных требований не предъявляется. Знатоки сходятся на том, что стерео лучше все же слушать с полным разделением каналов, но сабвуферные системы существенно экономят средства или труд на басовый тракт и облегчают размещение акустики в малогабаритных помещениях, почему и пользуются популярностью у потребителей с обычным слухом и не особо взыскательных.

«Просачивание» СЧ-ВЧ в сабвуфер, а из него в воздух, сильно портит стерео, но, если резко «обрубить» подбасы, что, кстати, очень сложно и дорого, то возникнет очень неприятный на слух эффект перескока звука. Поэтому расфильтровка каналов в сабвуферных системах производится дважды. На входе электрическими фильтрами выделяются СЧ-ВЧ с басовыми «хвостиками», не перегружающими СЧ-ВЧ тракт, но обеспечивающими плавный переход на подбас. Басы с СЧ «хвостиками» объединяются и подаются на отдельный УМЗЧ для сабвуфера. Дофильтровываются СЧ, чтобы не портилось стерео, в сабвуфере уже акустически: подбасовый динамик, ставят, напр., в перегородку между резонаторными камерами сабвуфера, не выпускающими СЧ наружу, см. справа на рис.

К УМЗЧ для сабвуфера предъявляется ряд специфических требований, из которых «чайники» главным считают возможно большую мощность. Это совершенно неправильно, если, скажем, расчет акустики под комнату дал для одной колонки пиковую мощность W, то мощность сабвуфера нужна 0,8(2W) или 1,6W. Напр., если для комнаты подходят АС S-30, то сабвуфер нужен 1,6х30=48 Вт.

Гораздо важнее обеспечить отсутствие фазовых и переходных искажений: пойдут они – перескок звука обязательно будет. Что касается КНИ, то он допустим до 1% Собственные искажения басов такого уровня не слышны (см. кривые равной громкости), а «хвосты» их спектра в лучше всего слышимой СЧ области не выберутся из сабвуфера наружу.

Во избежание фазовых и переходных искажений усилитель для сабвуфера строят по т. наз. мостовой схеме: выходы 2-х идентичных УМЗЧ включают встречно через динамик; сигналы на входы подаются в противофазе. Отсутствие фазовых и переходных искажений в мостовой схеме обусловлено полной электрической симметрией путей выходного сигнала. Идентичность усилителей, образующих плечи моста, обеспечивается применением спаренных УМЗЧ на ИМС, выполненных на одном кристалле; это, пожалуй, единственный случай, когда усилитель на микросхемах лучше дискретного.

Примечание: мощность мостового УМЗЧ не удваивается, как думают некоторые, она определяется напряжением питания.

Пример схемы мостового УМЗЧ для сабвуфера в комнату до 20 кв. м (без входных фильтров) на ИМС TDA2030 дан на рис. слева. Дополнительная отфильтровка СЧ осуществляется цепями R5C3 и R’5C’3. Площадь радиатора TDA2030 – от 400 кв. см. У мостовых УМЗЧ с открытым выходом есть неприятная особенность: при разбалансе моста в токе нагрузки появляется постоянная составляющая, способная вывести из строя динамик, а схемы защиты на подбасах часто глючат, отключая динамик, когда не надо. Поэтому лучше защитить дорогую НЧ головку «дубово», неполярными батареями электролитических конденсаторов (выделено цветом, а схема одной батареи дана на врезке.

Немного об акустике

Акустическое оформление сабвуфера – особая тема, но раз уж здесь дан чертеж, то нужны и пояснения. Материал корпуса – МДФ 24 мм. Трубы резонаторов – из достаточно прочного не звенящего пластика, напр., полиэтилена. Внутренний диаметр труб – 60 мм, выступы внутрь 113 мм в большой камере и 61 в малой. Под конкретную головку громкоговорителя сабвуфер придется перенастроить по наилучшему басу и, одновременно, по наименьшему влиянию на стереоэффект. Для настройки трубы берут заведомо большей длины и, задвигая-выдвигая, добиваются требуемого звучания. Выступы труб наружу на звук не влияют, их потом отрезают. Настройка труб взаимозависима, так что повозиться придется.

Усилитель для наушников

Усилитель для наушников делают своими руками чаще всего по 2-м причинам. Первая – для слушания «на ходу», т.е. вне дома, когда мощности аудиовыхода плеера или смартфона не хватает для раскачки «пуговок» или «лопухов». Вторая – для высококлассных домашних наушников. Hi-Fi УМЗЧ для обычной жилой комнаты нужен с динамикой до 70-75 дБ, но динамический диапазон лучших современных стереонаушников превышает 100 дБ. Усилитель с такой динамикой стоит дороже некоторых автомобилей, а его мощность будет от 200 Вт в канале, что для обычной квартиры слишком много: прослушивание на сильно заниженной против номинальной мощности портит звук, см. выше. Поэтому имеет смысл сделать маломощный, но с хорошей динамикой отдельный усилитель именно для наушников: цены на бытовые УМЗЧ с таким довеском завышены явно несуразно.

Схема простейшего усилителя для наушников на транзисторах дана на поз. 1 рис. Звук – разве что для китайских «пуговок», работает в классе B. Экономичностью тоже не отличается – 13-мм литиевых батареек хватает на 3-4 часа при полной громкости. На поз. 2 – TDAшная классика для наушников «на ход». Звук, впрочем, дает вполне приличный, до среднего Hi-Fi смотря по параметрам оцифровки трека. Любительским усовершенствованиям обвязки TDA7050 несть числа, но перехода звука на следующий уровень классности пока не добился никто: сама «микруха» не позволяет. TDA7057 (поз. 3) просто функциональнее, можно подключать регулятор громкости на обычном, не сдвоенном, потенциометре.

УМЗЧ для наушников на TDA7350 (поз. 4) рассчитан уже на раскачку хорошей индивидуальной акустики. Именно на этой ИМС собраны усилители для наушников в большинстве бытовых УМЗЧ среднего и высокого класса. УМЗЧ для наушников на KA2206B (поз. 5) считается уже профессиональным: его максимальной мощности в 2,3 Вт хватает и для раскачки таких серьезных изодинамических «лопухов», как ТДС-7 и ТДС-15.

Представленная здесь конструкция является готовым модулем монофонического усилителя НЧ высокой мощности с очень хорошими параметрами. Данный усилитель смоделирован на основе популярной разработке инженера . Схема имеет низкие гармонические искажения, которые не превышает 0.05%, при мощности на нагрузке порядка 500 Вт. Данный усилитель является полезным и необходимым при организации различных уличных концертных мероприятий и уже много раз оказывался незаменим во время этих событий. Большим преимуществом системы является простая конструкция и недорогой выходной каскад, состоящий из 10 объединённых МОП-транзисторов. УМЗЧ может работать с динамиками с сопротивлением как 4 или 8 Ом. Единственной настройкой, которую необходимо выполнить во время запуска — это установка тока покоя выходных транзисторов.

В статье приводится только схема и описание работы непосредственно усилителя мощности, но не забывайте, что полный аудиокомплекс содержит и другие модули:

  • Оконечник УМЗЧ
  • Предусилитель
  • Блок питания
  • Индикатор уровня
  • Система мягкого старта
  • Система управления охлаждением
  • Блок защиты динамиков АС

Принципиальная схема УНЧ на транзисторах 500 ватт

Схема усилителя мощности приведена на рисунке выше. Это классическая схемотехника, состоящая из дифференциального входного усилителя и симметричного усилителя мощности, в котором работает 5 пар транзисторов. Транзисторы T2 (MPSA42) и T3 (MPSA42) работают в схеме дифференциального усилителя с питанием через резисторы R8 (10k) и R9 (10k). Напряжение в середине этого делителя стабилизировано с помощью стабилитрона D2 (15V/1W) и фильтруется конденсатором C4 (100uF/100V). Входной сигнал подается на разъем GP1 (IN) и фильтруется через элементы R1 (470R), R3 (22k), C1 (1uF) и C2 (1nF), которые ограничивают частотный диапазон усилителя как сверху, так и снизу.

Нагрузкой дифференциального усилителя являются транзисторы T1 (MPSA42) и T4 (MPSA42), работающие в системе с общей базой, а также резисторы R5 (1,2 k) и R6 (1,2 k). Полярность нагрузки задаёт стабилитрон D1 (15V/1W) и резистор R7 (10k). Основной задачей системы состоящей из транзисторов T1 и T4 является согласование импеданса выходного сигнала для каскада УНЧ. Еще один каскад, построенный на транзисторах T5 (MJE350) и T6 (MJE350), выполняет роль дифференциального усилителя напряжения. Питается он через резистор R11 (100Р/2W). Нагрузкой его будут транзисторы T14 (MJE340) и T15 (MJE340), резисторы R13 (100Р/2W) и R14 (100Р/2W), и транзистор T7 (BD139).

Конденсатор C15 (47nF), подключенный параллельно резистору R44 (10k/2W) улучшает прохождение импульсных сигналов, в то время как небольшие конденсаторы C7 (56pF) и C8 (56pF) противодействуют самовозбуждению УМЗЧ. Транзистор T7 вместе с резисторами R10 (4,7 k), R45 (82R) и потенциометром P1 (4,7k) позволяет установить правильную полярность выходных транзисторов T9-T13 (IRFP240), T17-T21 (IRFP9240) в состоянии покоя. Потенциометром P1 можно установить ток покоя, который должен составлять около 100 мА на каждую пару выходных транзисторов. Транзисторы T9-T13, как и T17-T21 соединены параллельно и работают как повторители напряжения на большой максимальный выходной ток. Следовательно, предыдущие каскады усилителя должны обеспечить все усиление по напряжению, которое определяется с помощью соотношения R4 (22k) к R2 (470R) и составляет около 47.

Резисторы R30-R39 (0,33 R/5W), включенные в истоки выходных транзисторов обеспечивают защиту от их повреждения, которое могло бы возникнуть в случае различных сопротивлений каналов транзисторов. Резисторы R20-Р29 (470R), соединены последовательно с выходами транзисторов T9-T13, T17-T21, служат для уменьшения скорости зарядки емкости и, следовательно, ограничивают частотный диапазон усилителя.

Усилитель имеет две простые защиты:

  1. Первая направлена против перегрузки и реализована с помощью стабилитронов D3 (7,5 V/1W) и D4 (7,5 V/1W), которые не допускают роста напряжения между источниками и выходами мощных транзисторов выше 7.5 вольта.
  2. Вторая защита построена с использованием транзисторов T7, T16 и (BD136), резисторов R16-R17 (33k) и R18-R19 (1к) и диодов D7-D10 (1N4148). Она предотвращает чрезмерное увеличение тока силовых транзисторов, что могло бы привести к превышению допустимой мощности. Участок схемы, состоящий из транзисторов T7, T16 отслеживает падение напряжения на R30 (0,33 R/5W) и R35 (0,33 R/5W) и ограничивает рост напряжения мощных транзисторов в случае превышения допустимого проходящего через не тока.

Блок питания не стабилизированный двух полярный, состоящий из диодного моста Br1 (25А) и конденсаторов C9-C14 (10000uF/100V). Питание усилителя защищено плавкими предохранителями F1-F2 (10A). За предохранителями напряжение дополнительно фильтруется конденсаторами C18-C19 (1000uF/100V). Питание входных цепей отделено от питания усилителя мощности с помощью диодов D5-D6 (1N4009), резисторов R12 (100Р/2W), R15 (100Р/2W) и фильтруется конденсаторами C3 (100uF/100V) и C6 (100uF/100V). Это предотвращает перепад напряжений, которое может возникать на пиках мощности при больших нагрузках. Светодиоды D11-D12 вместе с оконечными ограничивающими их ток резисторами R40-R41 (16K/1W) представляют собой индикаторы наличия питания на схеме.

Блок питания

На рисунке далее представлена схема блока питания — источника нескольких вспомогательных напряжений. Он не требуется для работы самого усилители мощности, но очень полезен для питания остальных блоков полного аудио-комплекса, таких как: предусилитель, вентиляторы, индикатор уровня, система мягкого старта или защита динамиков. Все эти модули интегрированы в один общий усилитель в большом корпусе.


Блок питания на вспомогательные напряжения УНЧ — схема

Блок питания разделен на несколько отдельных секций, каждая из которых имеет свой отдельный контур массы. Первая секция представляет собой симметричный блок питания 2×15 В, он используется для питания предварительного усилителя. Разъем A4 служит для подключения двухполярной обмотки трансформатора. Напряжение выпрямляется с помощью выпрямительного моста Br2 (1 A) и фильтруется стабилизаторами U2 (LM317), U6 (LM337) с помощью C1 (100nF), C7 (100nF) и C24-C25 (4700uF). Выходной фильтр представляют собой конденсаторы C8-C9 (100nF) и C19-C20 (100uF). Выходное напряжение этого блока устанавливается с помощью резисторов R2-R3 (220R) и R9-R10 (2,4 к). Транзисторы T1 (BC546), T2 (BC556); резисторы R4-R5 (10k) и R7-R8 (3,3 k) представляют собой цепь отключения питания, а точнее, они снижают напряжения питания до 2×1.25 V, что позволит выполнить отключение предусилителя. Во время нормальной работы, короткое замыкание разъема GP8 обеспечивает правильную работу предусилителя.


Печатная плата БП — рисунок

Два следующих модуля — блоки питания 12 В, собранные с помощью стабилизаторов U4 (7812) и U5 (7812) и предназначенные для питания других элементов схемы. Два отдельных источника необходимы из-за того, что усилитель оснащен двумя парами индикаторов уровня, каждый на отдельной массе. Одна пара работает на входе, контролируя входной уровень сигнала, а вторая пара подключена к выходу и позволяет определить текущий уровень мощности УМЗЧ.


Печатная плата источников питания — после травления и сверления

Оба блока питания очень просты, первый состоит из диодного моста Br3 (1A), фильтрующих конденсаторов C5-C6 (100nF), C18 (100uF) и C22 (1000uF) и стабилизатора U4. Обмотки трансформатора должны быть подключены к разъему А2, а выходом блока питания будут разъемы GP6 и GP7.

Второй канал 12 В работает точно так же, и состоит из элементов: Br4 (1A), C10-C11 (100nF), C23 (1000uF), C21 (100uF) и U5.

Последний модуль системы БП — цепи питания других устройств усилителя и вентиляторов охлаждения. К разъему А1 следует подключить трансформатор. Напряжение выпрямляется с помощью выпрямительного моста Br1 (5А) и фильтруется конденсаторами C27 (4700uF), C12 (4700uF) и C2 (100nF). В роли стабилизатора работает здесь микросхема U1 (LM317), которой устанавливают необходимое напряжение с помощью резисторов R1 (220R) и R6 (2,7 k).

Конденсаторы C3 (100nF) и C16 (100uF) фильтруют напряжение на выходе стабилизатора, которое через разъемы GP1 и GP2 попадает в систему управления работой вентиляторов. Это же напряжение поступает через диод D1 (1N5819), на стабилизатор U3 (7812), задачей которого является обеспечение питания для других устройств усилителя, подключенных к разъемам GP3-GP5. Конденсаторы C28 (4700uF), C13 (4700uF), C4 (100nF) и C17 (100uF) фильтруют напряжение перед стабилизатором.


Печатная плата УНЧ — рисунок

УСИЛИТЕЛЬ МОЩНОСТИ ХОЛТОНА

СХЕМЫ ВАРИАНТОВ УСИЛИТЕЛЯ ХОЛТОНА

Информации по усилителю мощности Холтона в интернете довольно много, однако она разрознена. Не смотря на достаточность информации все равно у радиолюбителей возникает множество вопросов на тему сборки усилителя Холтона, хоть в его перовначальном виде, хоть в доработанных вариантах.
Именно по этой причине было решено собрать все в одном месте и дать наиболее исчерпывающую информацию по этому усилителю.
Для начала перевод статьи Эрика Холтона сделанный нынче покойным сайтом НЬЮТОНЛАБ:

Симметричный усилитель – усовершенствованная схема, опубликованная в июньском номере Cilicon Chip за 1994 год.
Каскад усиления напряжения
Этот каскад обеспечивает усиление по напряжению для предвыходного каскада, раскачивающего мощный выходной каскад до полной мощности.
Элементы T6, T7, T8, T9, R15, R14, R12, R13, C3, C7, C8 образуют второй диффкаскад усиления напряжения T7 и T9 . R15 обеспечивает ток покоя дифф каскада 8 мА.
Другие перечисленные компоненты образуют местную частотную коррекцию каскада.
Каскад стабилизации тока покоя.
Состоит из T10, R34, R37, R38, C12. Служит для стабилизации тока покоя выходного каскада от температуры и изменения питающего напряжения.
Каскад усиления тока.
Усиливает ток необходимый для работы на 8 и 4 омную нагрузку.2 омная нагрузка невозможна без использования дополнительных мощных транзисторов.
Блок питания для 400 ваттного усилителя.
Блок питания для этого усилителя мощности состоит из двух компонент.
1-ая: Тороидальный трансформатор с габаритной мощностью 625 ВА. Первичная обмотка, которого рассчитана на вашу сеть. Для Австралии 240 вольт, США 110, 115 вольт переменного напряжения и я думаю, что мой вариант (220 Вольт) пригоден для Европы и России (220-240 Вольт).
2х50 Вольт переменного напряжения для полной мощности.
Один диодный мост на 400 Вольт 35 Ампер.
Два резистора по 4,7 кОм 5 Ватт.
Конденсаторы 2х10000 мкФ на 100 Вольт, в идеале это должны быть конденсаторы по 40000 мкФ на каждое плечо выпрямителя.
Как подобрать МОСФЕТ транзисторы.
Когда используется этот тип МОСФЕТ-транзисторов в симметричном усилителе настоятельно рекомендую тщательную подборку выходных транзисторов. Для исключения протекания постоянного тока через нагрузку.
Резисторы 0,22 Ома образуют только локальную обратную связь и не защищают от тока.
Лучший метод, который я нашел для подбора транзисторов, это 150 Омный 1 Ваттный резистор и 15 Вольтный источник напряжения. Если Вы посмотрите на схему, то увидите как измеряется N-канальный и P- канальный транзистор.

На подключенном в схему транзисторе измеряется постоянное напряжение. Оно находится в пределах 3,8-4,2 Вольт. Просто подберите транзисторы в группу с различием в+-100 мВольт.
Пожалуйста, не перепутайте схему подключения P-канальног и N-канального транзистора.
Сборка печатной платы.
При первом взгляде на печатную плату просмотрите, все ли отверстия просверлены, и диаметры отверстий соответствуют диаметрам ножек деталей. Если что-то не просверлено – то, пользуясь, приведенными ниже, стандартными диаметрами, просверлите недостающие отверстия.
1/4 ваттный резистор = от 0,7 мм до 0,8 мм
1-ваттный резистор = 1 мм
1/4 диод Зеннера и нормальный мощный диод = 0,8 мм
Малосигнальные транзисторы, такие как BC546, в корпусе TO-92 =0,6 мм
Средне сигнальные транзисторы, такие как MJE340, в корпусе ТО-126 = 1,0 мм
Мощные выходные девайсы IRFP9240 устанавливаются в 2,5 мм отверстия.

Сборка начинается с установки 1/4 ваттных резисторов, затем устанавливаются мощные резисторы, диоды, конденсаторы и малосигнальные транзисторы. Следует быть внимательным при установке полярных элементов. Неправильное подключение может привести к неработоспособности устройства или выходу одного, или более элементов, при включении схемы.
Выходные транзисторы и транзистор Q10(BD139) – устанавливаются позже.
Предпусковой тест.
Допустим, что вы установили все элементы, кроме выходных транзисторов и Q10(BD139). Подсоедините на временные проводники транзистор Q10. Надо быть внимательным, чтобы не поменять местами эмитер-коллектор-база на база-коллектор-эмитер транзистора BD139.
Это нужно, чтобы во время тестирования усилитель работал должным образом. Также следует установить 10-ти Омный резистор, параллельно ZD3, со стороны проводников печатной платы. Для чего это нужно? Для того чтобы подключить резистор R11 обратной связи к буферному каскаду. Исключая выходные каскады получаем очень низкомощный усилитель мощности и можем произвести тесты без опасности вывести из строя выходные каскады. Теперь, когда подключен резистор обратной связи, пришла пора подключать питание +-70 вольт и включать.
Пятиватные резисторы по 4.7 кОм при этом уже должны быть установленными параллельно ёмкостям блока питания. Убедитесь в отсутствии дыма от схемы, ставьте прибор на измерение напряжения.
Измерьте следующие позиции по схеме, если напряжения находятся в пределах 10- ти процентов – то можно быть уверенным, что усилитель в порядке.
Если измерения закончены, то гасите питание, демонтируйте 10-ти Омный резистор.
R3~1,6 В
R5~1,6 В
R15~1,0 В
R12~500 мВ
R13~500 мВ
R8~14,6 В
ZD1~15 В
Напряжение на R11 должно быть близким к 0 В, в пределах 100 мВ.
Завершение сборки модуля.
Теперь мы можем приступить к установке выходных транзисторов на плату. Этот шаг надо делать только после Как подобрать МОСФЕТ транзисторы. Пред установкой мощных выходных транзисторов в плату впаиваются 0,22 Ом резисторы.
Формуем (если требуется) выводы N-канальных транзисторов, устанавливаем их в плату, обрезаем выступающие выводы. Так - же следует сделать и с P-канальными транзисторами.
Транзисторы можно устанавливать тремя разными способами:
1. Стоя, без формовки выводов, сверху.
2. Параллельно плате, сверху.
3. Параллельно плате, снизу.
Для крепления понадобятся винты М3х10-16 9 шт., гроверные шайбы – д3, шайбы д3 и гайки М3 9 шт.(7 комплектов для крепления мощных транзисторов и Q10, два для платы).
Устанавливать выходные транзисторы на радиатор следует через изолирующие прокладки с использованием теплопроводящей пасты.
Завершив монтаж всех элементов, внимательно просмотрите модуль, все ли компоненты впаяны, правильно ли они установлены. Только когда Вы убедитесь, что всё сделано правильно и все детали стоят на своих местах можно подключать питание. Транзистор Q10 на гибких проводниках, устанавливается на радиатор рядом с выходными транзисторами.
Теперь мы имеем готовый, проверенный модуль, тестированный на ошибки усилитель напряжения и буферный каскад, и вы уверены, что они работают нормально.
Пришло время заворачивать винты и гайки в радиатор. Не забыв, при этом, про теплопроводный изолятор. Тепловое сопротивление в этом случае будет около 0,5 градуса на ватт или менее.
Тестирование модуля.
Мы достигли завершающей стадии – тестирования полного усилителя мощности.
Нам надо совершить ещё пять шагов:
1. Проверить, нет ли утечки с выводов транзисторов на радиатор.
2. Проверить, что полярность блока питания соответствует полярности на усилителе.
3. Движок резистора P1 нужно переместить до нуля, измеряется это дело между базовым и коллекторным выводом Q10 BD139.
4. Подключив проводами, блок питания, проверьте наличие предохранителей 5А в их гнездах.
5. Подключить вольтметр постоянного напряжения к выходу усилителя.
Для полного счастья не хватает только включить блок питания, сделайте это.
Посмотрите на вольтметр. Вы увидите напряжение на выходе от 1-го до 50-ти мВ, если это не так, то выключите питание усилителя и повторите проверку.
Вооружитесь маленькой фигурной отвёрткой. С помощью крокодилов закрепите щупы прибора на выводах одного из мощных резисторов 0,22 Ом. Медленно вращая движок резистора P1, установите на резисторе 0,22 Ом 18 мВ, это и будет установка тока в 100 мА на один транзистор.
Теперь проверьте напряжение на всех остальных резисторах, выберите один на котором напряжение наибольшее. Настройте резистором P1 на нем напряжение 18 мВ.
Теперь подключите сигналгенератор на вход и осцилограф на выход. Убедитесь в том, что форма сигнала свободна от шума и искажений.
Если у вас нет этих приборов, подключите нагрузку и получайте хорошее качество. Звук должен быть чистым и динамичным.
Конфигурация закончена.
С лучшими пожеланиями:
Antony Eric Holton


УВЕЛИЧИТЬ

К сожалению в статье не приведен (или не сохранился) оригинальный чертеж печатной платы, однако есть чертеж расположения деталей на оригинальном усилителе Холтона, а развести дорожки большого труда не составит:

Что-то похожее на именно эту плату есть ниже.

Принципиальная схема усилителя приведена на рисунке ниже. Это почти схема Энтони Холтона, но только ПОЧТИ. В предлагаемом Вам усилители используются более скоростные транзисторы и несколько изменены номиналы, что позволило хоть и немного, но все же улучшить звучание и без того хорошо играющего усилителя.
Широкий диапазон питающих напряжений делает возможным построение усилителя мощностью от 200 до 800 Вт, причем во всем диапазоне мощностей у УМЗЧ коф. нелинейных искажения не превышает 0,08% на частоте 18 кГц при выходной мощности 700 Вт, что позволяет отнести этот усилитель к разряду Hi-Fi.

Замена транзисторов в усилителе напряжения вызвана прежде всего желанием увеличить надежность, да и используемые транзисторы в оригинальном усилителе Холтона мягко говря несколько мутноваты, не смотря на маститых производителей не указаны ни коф усиления, ни максимальная частота. Только максимальное напряжение в 300 В и ток в 0,5 А, ну и максимальная расеиваемая коллектором мощность в 20 Вт.
Однако есть транзисторы с нормируемыми параметрами, которые можно использовать в этом усилителе и которые уже прошли проверку не на одной тысячи усилителей. Правда таких высоковольтных нет, но напряжение коллектор - эмиттер в 300 В в этом усилителе и не нужно, поскольку подача напряжения питания более чем ±90 В уже может спровоцировать пробой оконечного каскада, имеющего макисмальное напряжение в 200 В.
А учитывая то, что данная схема позволят легко адаптироваться и меньшему напряжению питания перечень возможных замен расширяется, причем гарантированно не ухудшается качество усилителя.
Используя более мощные транзисторы так же отпадает необходимость компенсатора емкости затворов, который Холтон предлагал использовать при установки более 5-6 пар оконечных транзисторов - ток коллектора последнего каскада усилителя напряжения в 1,5 А вполне достаточен для зарядки-разрядки десяти пар оконечников даже при уменьшении сопротивлений в цепях затвора до 68 Ом. Компенсатор же в добавок к тому, что снижал выходную мощность, так еще и довольно существенно уменьшал устойчивость усилителя, что в свою очередь заставляло увеличвать успокаивающие конденсаторы вплоть до влияние в звуковом диапазоне - на частотатх выше 10 кГц уже наблюдался спад в 3 дБ

Ниже приведена таблица возможных замен транзисторов УНа с поправкой на напряжение питания усилителя

КОМПЛЕМЕНТАРНАЯ
ПАРА

НАПР-НИЕ
К-Э, В

ТОК КОЛ-РА,
А

МАКС
ЧАСТОТА, МГц

КОФ
УСИЛЕНИЯ

МАКС
НАПР-НИЕ
ПИТАНИЯ
УМЗЧ, В

МАКС
МОЩНОСТЬ
УМЗЧ
НА 4 ОМА, Вт

Так же в предлагаемом варианте сильно изменены номиналы некоторых резисторов, что позволило добиться более приятного и естественного звучания, по сравнению с оригинальным усилителем Холтона. Прежде всего уменьшены номиналы резисторов в эмиттерных цепях усилителя напряжения, что увелило протекающий через них ток, увелило нагрев, но уменьшило изменение тока во всем диапазоне питающих напряжений, что существенно снизило уровень THD.
Если есть возможность подобрать транзисторы 2N5551 по коф усиления, то резисторы в эмиттерах дифкаскада можно уменьшить до 10 Ом - это так же приводит к снижению THD.
Возвращаясь к удаленным резисторам по питанию усилителя напряжения. В оригинальной схеме фильтрующие конденсаторы имеют емкость всего 100 мкФ, в предлагаемом варианте используются конденсаторы на 470 мкФ. Благодаря VD4 и VD5 запасенная в конденсаторах энергия не будет уходить в силовую часть в случае краткосрочных провалов напряжения питания, что благоприятно сказывается на режимах работы транзисторов усилителя напряжения.
Разновидностей схемотехники, используемой Холтоном довольно много, например серийно выпускаемый усилитель "STUDIO 350", использующий биполярные транзисторы в качестве оконечного каскада:

Однако изменение некоторых узлов и режимов работы позволило существенно улучшить качество звучания оригинального усилителя Холтона, а его доработка максимально приблизила данный усилитель к категории ХАЙ-ЭНДа.
На последок остается пояснить почему усилитель Холтона называют симметричным, ведь на симметричные усилители, например ЛАНЗАР , ВП или ЛИНКС он не похож. Симметрия данного усилителя мощности заключается не в схемотехнике плеч отрицательного и положительного плеча, а в способе организации отрицательной обратной связи - и входной сигнал и сигнал с выхода, который используется для ООС, проходят одинаковое количество каскадов, собраных по одинаковой схемотехнике.

ПЕЧАТНЫЕ ПЛАТЫ ДЛЯ УСИЛИТЕЛЯ ХОЛТОНА

Далее собраны чертежи печатных плат усилителя Холтона, выложенные на форумах "ПАЯЛЬНИК" и "НЕМНОГО ЗВУКОТЕХНИКИ", ну и конечно же собственные варианты. Все файлы запакованы WINRAR и имеют формат LAY 5, для скачивания нажмите понравившуюся картинку .
Открывает галлерею печатных плат чертеж с двумя парами оконечных транзисторов. В данном варианте радиаторы для транзисторов раздельные, плата имеет размер 80 х 90 мм:

Еще один вариант печатной платы с двумя парами в оконечном каскаде, но уже не IRFP240 - IRFP9240, а IRF640 - IRF9640. Плата выполнена под SMD компоненты и имеет сразу два канала. Размер платы 158 х 73 мм:

Следующий вариант сильно напоминает классическое расположение деталей, как в оригинальном усилителе Холтона. Плата расчитана под установку двух пар в окнечном каскаде и общем радиаторе для транзисторов УНа. Размер 124 х 89 мм:

Еще один вариант с двумя парами на выходе, размер 111 х 39мм, ВСЕ транзисторы УНа на одном радиаторе:

Следующий вариант использует 4 пары оконечных транзисторов и способен отдать в нагрузку до 400 Вт. Размер платы 182 х 100 мм:

Монстр с десятью парами и установленным компенсатором имеет размер 280 х 120 мм, вероятней всего под нагрузку 2 Ома:

Универсальная плата для усилителя Холтона, позволяющая наращивать количество пар транзисторов оконечного каскада. Чертеж многостраничный , плата двухярусная, внешний вид усилителя на 200 Вт приведен ниже, установлены транзисторы 2SD669A и 2SB649A:

В связи с отказом IR от производства IRFP240 - IRFP9240 качество транзисторов заметно ухудшилось, поэтому было решено переработать усилитель Холтона под универсальный выходной каскад на транзисторах 2SA1943 - 2SC5200, к тому же имеющий защиту от перегрузки. В результате получилась вот такая конструкция:

Данная плата так же имеет возможность наращивания выходных транзисторов, а на плате усилителя напряжения имеется возможность подключения отдельного источника питания, только для УНа:

Более подробно об этой схемотехнике написано . Или же можно посмотреть видео:

Осталось лишь сделать плату, запаять детали и перед включением ознакомится с информацией ниже.

НАЛАДКА УСИЛИТЕЛЯ ХОЛТОНА

Прежде чем приступить к наладке усилителя мощности Эрика Холтона следует более внимательно изучить схему. На странице с описанием схемы уже давались некоторые пояснения и приводилось несколько схем. На этой странице рассмотрм еще одну схему этого же усилителя, но уже выполненную в симмуляторе, что позволит проверить множество параметров, жестко поэксперементировать с элементами, выявив последствия ошибок при монтаже и использовании не качественной элементной базы.
Итак, подопытная схема усилителя Холтона имеет вид:

Данная схема содержит всего две пары оконечных транзисторов лишь для экспериментов в симмуляторе и более компактного отображения на странице. В реальности количество оконечных тразисторов напрямую зависит от требуемой выходной мощности, не зависимо от сопротивления нагрузки - одна пара транзисторов IRFP240 - IRFP9240 безболезненно способна отдать в нагрузку порядка 100 Вт, следовательно для получения 200 Вт потребуется две пары, а для получения 800 Вт уже необходимо 8 пар в оконечном каскаде. Для тех, кто не очень дружит с калькулятором приведена таблица зависимости выходной мощности от напряжения питания и необходимое количество пар транзисторов в оконечном каскаде:

ПАРАМЕТР

НА НАГРУЗКУ

2 Ома
(мост на 4 Ома)

Максимальное напряжение питания, ± В
Максимальная выходная мощность, Вт при искажениях до 1% и напряжении питания:

В скобках указан требуемое количество пар оконечных транзисторов.

±30 В
±35 В
±40 В
±45 В
±50 В
±55 В
±60 В
±65 В
±75 В
±85 В

НЕ ВКЛЮЧАТЬ!!!

В зависимости от напряжения питания меняются и напряжения в контрольных точках. Приводимая ниже карта напряжений позволит орентироваться не только в режимах работы, но и в поиске неисправности усилителя Холтона:

КАРТЫ НАПРЯЖЕНИЙ

НАПРЯЖЕНИЕ ПИТАНИЯ

НАПРЯЖЕНИЕ

±40 В
±50 В
±60 В
±70 В
±80 В
±90 В

Прежде всего следует обратить внимание на номинал резисторов R3, R7 и R8. Именно эти резисторы задают токовые режимы работы первых каскадов, которые непосредственно влияют на работу всех следующих.
Ни для кого не секрет, что при одном и том же сопротивлении и разном напряжении ток через сопротивление будет изменяться. Собственно этим и объясняется различие номиналов сопротивлений R3, R7 и R8. Конечно же номиналы, приведенные в оригинальной схеме сохранят работоспособность усилителя во всем диапазоне питающих напряжений, однако их изменение позволит значительно уменьшить уровень THD. А именно этот параметр зачастую является главным при выборе схемы.
Кроме этого изменение номиналов изменяет и рассеиваемую мощность транзисторов Q3 и Q4, уменьшая их саморазогрев и улучшая термостабильность усилителя. Если делать усилитель для себя, а не для того, чтобы бухало, то имеет смысл обратить внимание и на этот фактор. Даже при измененных резисторах верхние транзисторы греются:
Саморазогрев большого влияния на режимы работы каскадов не оказывает - генератор тока на транзисторе Q2 удерживает ток в заданном диапазоне и ток следующих каскадов почти не изменяется. Тем не менее если есть возможность снизить нагрев, то почему бы этого не сделать?
По сути диф каскад используется для получения качественной отрицательнйо обратной связи и усиления во входнйо сигнал он не вносит. Так же не усиливают напряжение и транзисторы Q3 и Q4 - они формируют смещение для следующего каскада.
Основное увеличение амплитуды входного сигнала происходит на транзисторе Q11.
Так же на уровень THD оказывает влияние собственного коф усиления, поэтому при постройке усилителя с выходной мощностью выше 500 Вт может встать вопрос об использовании предварительного усилителя или введения в усилитель буферного ОУ. Для примера возьмем собственный коф усиления равным 36 дБ. Для получения на выходе усилителя амплитуды напряжения в 63 В нам потребуется подать на вход 1 вольт. Уровень THD в этом случае составит более 0,07%:

При собственном коф усиления 30 дБ и выходном напряжении 63 В уровень THD снизился практически в 2 раза, правда на вход уже потребовалось подать 2 В:

Коф усиления зависит от отношения номиналов резисторов R14 и R11 и примерно может быть вычисленно по формуле Kу = (R14 / R11) + 1 .

На приведенном ниже рисунке показана форма и величина напряжений на схеме:

Синяя линия - напряжение на базе Q1 ; Красная - напряжение на коллеторе Q3 ; Зеленая - напряжение на коллекторе Q11 .
Вывод из этого сделать не сложно - транзистор Q11 должен иметь максимально возможный коф усиления, а поскольку Q6 работает с ним в диф каскаде, то его коф усиления должен быть равным коф усиления Q11. От величины коф усиления транзистора на прямую зависит какой ток потребуется для его открытия, т.е. как сильно будет нагружаться предыдущий каскад, от нагрузки которого тоже зависит уровень THD - чем меньше будет изменяеться протекающий через каскад ток, тем меньше будет THD.
Для подборки транзисторов можно конечно воспользоваться имеющимся на большинстве цифровых мультиметров гнездом, однако реальный параметр кофф усиления на этом гнезде можно получить лишь для транзисторов малой мощности. Для транзисторов средней и большой мощности можно лишь выбрать одинаковые с максимальными параметрами. О причинах такого безобразия можно почитать или посмотрель .
Завершая резистивную сагу усилителя напряжения стоит упомянуть о резисторах R4 и R9. Как уже писалось на странице с описанием схемы номинал этих резисторов довольно сильно влияют на уровень THD. Для примера возьмем номинал этих резисторов равных 100 Ом, как в оригинальной схеме и просчитаем уровень THD:

Ну в принципе уровень THD в 0,065 % даже меньше заявленных на большинстве сайтов 0,08%, однако не поленимся при покупке деталей и выберем транзисторы 2N5551 с максимально возможным и ОДИНАКОВЫМ коф усиления. Это даст повод снизить R4 и R9 до 22 Ом и мы получим следующий уровень THD:

Масштаб сетки сохранен намеренно, чтобы дать прочувствовать что получается при смене двух номиналов, но предварительной отбраковке элементной базы - THD снизился до велечины в 0,023 % и это при выходной амплитуде 63 В и собственном коф усиления 30 дБ .
Теперь собственно осталось поиграться номиналами резисторов оконечного каскада, а именно с резисторами, установленными на затворы оконечных транзисторов. 100 Ом... С одной строны вроде не много, однако давая поправку на то, что емкость затвора составляет 1200-1300 пкФ имеет смысл задуматься и смоделировать примерно такую схему:

На этой схеме исключен усилитель напряжения, а вместо него используются два генератора прямоугольных импульсов V1 и V2, работающих в противофазе. Таким образом V1 управляет положительным плечом оконечного каскада, а V2 - отрицательным. Источник постоянного напряжения V3 обеспечивает ток покоя оконечного каскада. У нас получается проверка параметров ТОЛЬКО оконечного каскада и мы посмотрим что творится на выходе "усилителя" и на его входе, если в затворных цепях стоят резисторы на 100 Ом:

Синяя линия - напряжение на правом выводе R1, т.е. напряжение приходящее с УНа. Красной линией обозначено напряжение подающееся на нагрузку. Не нужно обладать хорошим зрением, чтобы увидеть выбросы и завал фронтов и спадов прямоуголки. Если кто не пересчитал, то это частота 16 кГц.
Теперь снизим в два раза номинал резисторов в затворах и получим следующее:

Какую форму приобретет прямоуголка при использовании резисторов на 470 Ом, установленных в оригинальном усилителе догодаться не трудно, поэтому рисунок прилагать не буду. Почему используются резисторы на 100 Ом, а не меньше? Ну давайте попробуем разобраться...
Прежде всего транзисторы IRFP240 - IRFP9240 разрабатывались отнюдь не для усилителей мощности ЗЧ и такого параметра как коф усиления у них не нормирован. Однако подобрать одинаковые транзисторы, пока их выпускала International Rectifier (IR) было совсем не трудно - из одной нормоупаковки отбраковывался один-два, а то и не одного транзистора, а вот с транзисторами от Vishay Siliconix что-то не то - они явно не для усилителей мощности.

Можно конечно обратиться в "звуковым" полевикам, однако их цена кусается и довольно сильно, поэтому вернемся к резисторам в затворах и посмотрим какой собственно ток отдает УН на перезарядку этих самых затворов. Для этого возьмем модель полноценного усилителя с восьмью парами оконечников, а в качестве измерительного инструмента возьмем падение напряжения на дополнительных резисторах R19 и R20 (выделены зеленым):

На частоте 16 кГц и выходном напряжении 63 В падение на сопротивлении 1 Ом составило 0,025 В, что соответствует протекающему через резистор току в 0,025 А (зеленый фон). При выходной мощности близкой к клиппингу (см внизу страницы) падение на этом же резисторе составляет уже 0,033 В, т.е. 0,033 А требуется на перезарядку восьми пар затворов оконечного каскада. Учитывая то, что в оригинальном усилителе Холтона используются транзисторы KSE340 - KSE350 с максимальным током в 0,5 А, то становится понятно почему резисторы должны быть не менее 100 Ом.
Однако выше есть таблица возможных замен и там у ВСЕХ транзисторов ток коллетора не менее 1 А, что позволяет отказаться от так называемого компенсатора емкости затворов, предложенным Холтоном, а подключать затворы непосредственно к выходу усилителя напряжения.
Номиналы затворных резисторов можно уменьшить и в случае использования меньшего количества пар оконечных транзисторов. Номинал можно вычислить по пропорции исходя из того, что для восьми пар необходимо 100 Ом, а для 4 пар уже 50 Ом будет вполне достаточно, даже при использовании в усилителе KSE340 - KSE350. Ниже 15 Ом резисторы в затворах оконечников лучше не использовать - они кроме ограничения тока перезарядки еще немного и разброс параметров компенсируют.

Итак, с номиналами разобрались, монтрировали и пропаяли все элементы схемы, согласно своим понятиям, можно приступать к первому включению. Однако перед этим необходимо исключить из схемы оконечные транзисторы, а вместо них, временно запаять постоянные резисторы мощностью 0,5 - 1 Вт и споротивлением 10 - 15 Ом. Подобная мера диктуется стоимостью оконечных транзисторов - если все элементы на своих местах и они исправны, а на плате нет не запланированных перемычек, образующихся от не аккуратной пайки, то в этом варианте просто произойдет проверка работоспособности усилителя напряжения. Если же на плате есть сопли, попутаны местами элементы, или же они не исправны в следствии перегрева при монтаже или изначально бракованные, то силовая часть, способная выйти из строя останется целой.
В конечном итоге схема усилителя Холтона для первого включения выглядит так, где R31 и R32 имитируют оконечный каскад и замыкают цепь ООС, чтобы УН вывести на рабочий режим:

Напряжения на реальной плате не должны отличаться не более чем на 2% от приведенных на картах напряжений. Кстати сказать, в предлагаемом варианте схемы усилителя отсутствуют резисторы, включенные последовательно диодам D4 и D7. Сделанно это для получения хоть небольшого, но все же прироста выходной мощности. Особого значения эти резисторы при работе усилителя не имеют, а вот по количеству дыма от них, в случае ошибок монтажа, можно орентироваться о степени ошибки. Поэтому настоятельно рекомендуется, в целях экономии бюджета, последовательно с диодами D4 и D7 включить резисторы сопротивлением 10-15 Ом. После проверки работоспососбности их можно удалить.
Перед первым включение ОБЯЗАТЕЛЬНО подстроечный резистор R16 и на модели, и на реальной схеме, должен быть установлен в положение МАСКИМАЛЬНОГО сопротивления. На реальной схеме. В этом случае ток покоя оконечных транзисторов минимально возможный.

Теперь вернемся к реальной схеме:

Сборка С1-С3 и С7-С9 это аналоги неполярного конденсатора большой емкости, электролиты лучше использовать серии WL или WZ, так называемые компьютерные, имеющие серебристую или золотистую маркировку. Если есть возможность, то номиналы электролитов лучше удвоить - АЧХ в области НЧ получается ровнее, хотя и в этом услае остается в пределах 1,5 Дб.
Конденсаторы С14, С15, С16 и С17 на схеме 47 пкФ. Использовались эти номиналы для увеличения устойчивости, хотя при собственном коф усиления до 27 дБ усилитель вполне устойчив и при установке конеденсаторов по 22 пкФ.
После проверки работоспособности усилителя напряжения в плату монтируют оконечный каскад, устанавливают его на радиатор и производят регулировку тока покоя. С конечным каскадом перове включение лучше делать либо через токоограничивающие резисторы, установленные в каждое плечо питания, либо последовательно с первичной обмоткой трансформатора включить лампу накаливания мощностью 40-60 Вт. Если напряжения в контрольных точках соответствуют расчетным, то токоограничивающие цепи исключают, разумеется выключив блок питания и дав возможность разрядиться конденсаторам фильтров питания, а затем уже регулируеют ток покоя.
Довольно часто для усилителя Холтона рекомендуется ток покоя в 100 мА, однако какой либо разницы в качестве звучания при токе покоя от 45 мА до 150 мА выявить на слух не удалось, поэтому лучше использовать золотую середину - ток покоя в пределах 50-60 мА, тем более симмулятор показывает, что при этом токе покоя минимальный уровень THD.
Ну вот собственно и весь усилитель, под занавес более раняя версия рекомендаций по сборке двухэтажного варианта.

НЕСКОЛЬКО СЛОВ О ТОМ, КАК ПРАВИЛЬНО СОБРАТЬ УСИЛИТЕЛЬ
Вариант описания старой статьи.

Для примера рассмотрим модуль с двумя парами оконечных транзисторов, как самый популярный. Технология сборки остальных вариантов отличается лишь количеством применяемого крепежа. Для монтажа усилителя необходимо проверить перекушены ли ножки "меченных" маркером резисторов (поз.1) и распаять ножки-перемычки соединяющие "заднюю" часть конструкции (поз.2 рис. 3).


Рисуонок 3.

Кстати сказать, внешний вид платы предварительного усиления для наборов О-7 и О-8 имеет несколько иной вид, поскольку используются более высоковольтные транзисторы (рис.4).


Рисунок 4.

После распайки верхнюю плату следует отогнуть и при помощи винтов прикрутить нижнюю плату к радиатору при помощи винтов М-3. Под транзисторы выходного каскада и транзистор стабилизации тока покоя необходимо подложить слюдяные прокладки. Так же следует установить теплоотвод на транзисторы истоников тока и предпоследних каскадов на плате предварительного усилителя (поз 1 и 2 на рис.5). Размеры между отверстиями на плате предварительного каскада подобраны таким образом, что туда прекрасно становится половинка от радиатора процессора S-370, в которой необходимо лишь просверлить отверстия на 2,5мм и нарезать резьбу М-3. Если же ничего похоже под рукой нет и взять не где, то можно использовать кусок аллюминиевого уголка (поз.1 на рис.6 установлен уголок от аллюминиевого карниза, на который шторы вешают) или швелерка.


Рисунок 5.

Рисунок 6.

Затем верхняя плата выгинается в исходное положение и запаиваются ножки-перемычки 2 (рис.6) и еще раз проверяется перекушены ли выводы резисторов 3. Пожалуй стоит пояснить что это за резисторы такие...
При запайке перекушенного места этих резистров плату предварительного каскада можно включать без оконечного каскада, что очень удобно при настройке и ремонте усилителя. Т.е питание подается непосредственно на платц предварительного усилителя и в случае неисправности на плате предварительного усиления оконечным транзисторам ничего не угрожает.
После установки теплоотводов следует подать напряжение питания и подстроечным резистором выставить ток покоя оконечного каскада. Для этого меряется напряжение на токоограничивающих резисторах 0,22 Ома и вращением движка добиваются показаний милливольтметра 0,022 В, что будет соответствовать току 100 мА (разумеется вход на "землю"). На этом регулировку можно считать оконченной и Вам остается насладится приятным звуком этого усилителя.
Коф усиления усилителя можно расчитать по формуле R21+1/R6. Получившийся результат показывает во сколько раз входной сигнал будет усилен. Для получения коф усиления в дБ необходимо использовать формулу Кдб= 20 х lg Кр, где Клб - коф усиления в дБ, Кр - коф усиления в разах, lg - десятичный логарифм, 20 - множитель. Для примера равенства коф усиления в разах и дБ приведены в таблице.


Рисунок 7.

На рисунке 8 приведена схема подключения для модуля О-2, для остальных модулей подключение аналогичное.

Клиппинг на экране осциллографа.

Вместо чистой гармонической волны наблюдается обрезка синусоиды сверху и снизу - верхушки плоские вместо закруглённых.

Подробно о том, какой мощности нужен блок питания для усилителя мощности можно помотреть на видео ниже. Для примера взят усилитель STONECOLD, однако данный замер дает понимание тог, что мощность сетевого трансформатора может быть меньше мощности усилителя примерно на 30%.

Лучшие статьи по теме