Как настроить смартфоны и ПК. Информационный портал

Методика вычисления. Теория пределов

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойнее другой. В этой связи мы пока не будем рассматривать определение предела по Коши , а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Любой предел состоит из трех частей :

1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

А что в это время происходит с функцией ?
, , , …

Итак: если , то функция стремится к минус бесконечности :

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности и смотрим на поведение функции:

Вывод: при функция неограниченно возрастает :

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность , , . Если , то , , .

! Примечание : строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» начнёт принимать такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций . После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с интересными случаями, когда предела функции вообще не существует !

На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов. Кстати, по этой теме есть интенсивный курс в pdf-формате, который особенно полезен, если у Вас ОЧЕНЬ мало времени на подготовку. Но материалы сайта, разумеется, не хуже:


Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример:

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел
Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на

Пример 3

Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


Пределы с неопределенностью вида и метод их решения

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

Пример 4

Решить предел
Сначала попробуем подставить -1 в дробь:

В данном случае получена так называемая неопределенность .

Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.





Пример 5

Вычислить предел

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель:
Знаменатель:



,

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
Более того, такие числа целесообразно выносить за значок предела . Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.

Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.

! Важно
В ходе решения фрагмент типа встречается очень часто. Сокращать такую дробь нельзя . Сначала нужно поменять знак у числителя или у знаменателя (вынести -1 за скобки).
, то есть появляется знак «минус», который при вычислении предела учитывается и терять его совсем не нужно.

Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.


Метод умножения числителя и знаменателя на сопряженное выражение

Продолжаем рассматривать неопределенность вида

Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.

Пример 6

Найти предел

Начинаем решать.

Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела . Данное действие обычно проводится мысленно или на черновике.

Получена неопределенность вида , которую нужно устранять.

Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по возможности, избавляться. Зачем? А без них жизнь проще.

Посвящены одному из основных понятий математического анализа - пределу. И в случае числовой последовательности и в случае действительной функции действительного переменного исследовано неограниченное приближение к некоторому постоянному значению переменной величины, зависящей от другой переменной при определенном ее изменении. В этой главе попытаемся обобщить понятие предела для отображений произвольных метрических пространству причем обобщение коснется и способа стремления независимого переменного к заданному значению. 8.1. Понятие предела отображения Пусть X и У - метрические пространства с заданными на них метриками р и d соответственно, X - некоторое подмножество в X с той же метрикой />, имеющее а 6 X своей предельной точкой. Подчеркнем, что в силу определения 5.9 эта предельная для А точка может как принадлежать, так и не принадлежать подмножеству А. Будем рассматривать ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения проколотую окрестность U(a) = U(a) \ {а} данной точки. Пусть область определения отображения /: А У включат ет множество А. Отметим, что для точки а это отображение может и не быть определено. Определение 8.1. Точку 6 € У называют пределом отображения /: A -f У в точке а по множеству А и записывают b = lim f(x) или f(x) -> b при х-^а, если, како- ва бы ни была окрестность V(6) точки 6, существует такая проколотая окрестность U(a) точки а в X, что ее образ для любой точки ж€Ща)ПЛ принадлежит У(6),т.е. При выполнении (8.1) говорят также, что функция f(x) стремится к Ь при стремлении х по множеству А к точке а. Определение 8.1 является достаточно общим. В зависимости от того, какими множествами являются X, У, АСХ и какова точка а € X, можно получить различные конкретизации этого определения. Напомним (см. 5.2), что любая окрестность точки включает е-окрестность этой точки и всякая ^-окрестность является окрестностью. Поэтому, заменяя в (8.1) произвольную окрестность V (6) точки b б Y на ее ^-окрестность а проколотую окрестность точки а € X - на ее проколотую -окрестность приходим к следующей символической записи определения предела отображения, эквивалентного определению 8.1: При Y С R из (8.1) следует символическая запись определения предела отображения /: (предела действительной функции): . Бели в (8.5) 6 = 0) то функцию f(x) называют бесконечно малой при стремлении х по множеству А к точке а € X и записывают При У С R можно говорить о бесконечных пределах отображения, если точка 6 является одной из бесконечных точек (+оо или -оо) расширенной числовой прямой R или их объединением (оо). В этом случае окрестность каждой из перечисленных точек при выборе произвольного М > О примет вид Тогда из (8.1) следуют три довольно похожих между собой за-писи в символической форме определений бесконечных пределов функции: . Пример 8.1. Покажем, что lim f(x) = с, если отображение / в точках множества А принимает одно и то же значение с. В самом деле, какой бы ни была окрестность ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения V(c) точки с} Vx в U (а) П A /(х) = с, так как хе А. Поэтому /(U (а) П А) = с € V(c), что соответствует определению 8.1. Убедимся, что lim /(х) = а, если отображение / тождественно, т.е. /(я) = х Vx 6 А. В этом случае для любой окрестности V(a) при выборе U(a) = = V(a) \ {а} для тождественного отображения получим что отвечает (8.1). В частности, когда А = R и а соответствует бесконечной точке +оо расширенной числовой прямой, имеем: /(х) -f оо при х +оо. Действительно, при произвольном М > 0 в качестве проколотой окрестности бесконечной точки +оо достаточно выбрать множество U (+оо) = = {s € R: х > М}, чтобы получить /(х) > М и удовлетворить условию (8.7). # Если в определении 8.1 X = У = R и подмножество А = = {а: € R: х > а}, то приходим к понятию правостороннего предела действительной функции действительного переменного в точке а, обозначенного в 7.2 lim fix). Если же X = У = R Отметим, что множество А может совпадать со всем множеством X. При X = Y = R этот случай в определении 8.1 соответствует понятию двустороннего предела действительной функции действительного переменного, причем (если нет угрозы путаницы) вместо lim /(х) пишут просто lim /(х). Конечно, говоря о lim /(х), можно рассматривать всевоз-можные мыслимые подмножества А, но не всегда это приводит к содержательным нетривиальным результатам. Так, если функцию Дирихле рассматривать на подмножестве Q С R рациональных чисел, то получим просто постоянную функцию, предел которой установлен в примере 8.1. При определение 8.1 приведет к понятию предела последовательности точек произвольного метрического пространства У. В связи с этим дадим следующее определение. Определение 8.2. Точку 6 € У называют пределом последовательности {уп} точек уп метрического пространства У, если, какова бы ни была окрестность V(6) С У точки 6, существует натуральное число N , такое, что начиная с номера N +1 все точки данной последовательности попадают в эту окрестность, т.е. ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения При выполнении (8.10) говорят также, что {уп} стремится к точке 6. Использовав в (8.10) вместо произвольной окрестности точки 6 ее произвольную ^-окрестность, будем иметь Сравнивая (8.11) с (6.28) и определением 6.5, заключаем, что последовательность {уп} точек уп метрического пространства стремится к точке 6, если числовая последовательность {d(yn> 6)} расстояний d(yni b) € R бесконечно малая, т.е. Иначе говоря, исследование поведения последовательностей точек произвольного метрического пространства опирается на исследование сходимости числовых последовательностей. Более того, и предел отображения произвольных метрических пространств тесно связан с пределом последовательностей. Эту связь устанавливает следующая теорема. Теорема 8.1. Отображение /:У имеет точку 6 € У своим пределом при стремлении х по множеству А к точке а тогда и только тогда, когда при отображении / образ любой стремящейся к а последовательности точек из А является последовательностью точек из У, стремящейся к 6, т.е. Предположим, что точка 6 б У удовлетворяет определению 8.1 предела отображения и {х„} - произвольная последовательность точек хп из А, стремящаяся к точке a € X. Тогда, согласно (8.1), какова бы ни была окрестность V(b) С У точки 6, существует проколотая окрестность U(a) С X точ- ки а, такая, что /(и(а)ПА) С V(6). По определению 8.2, в U(a)nA должны лежать начиная с некоторого номера W + 1 все точки стремящейся к а последовательности {хп}» т.е. в силу (8.10) Тогда начиная с того же номера все точки f(xn) Е У последовательности {f(xn)} лежат в V(6), что, согласно определению 8.2, означает, что эта последовательность стремится к 6. Чтобы доказать достаточность условия теоремы, предположим, что для любой стремящейся к а последовательности {хп} точек хп из А последовательность {/(х„)} точек f(xn) из У стремится к 6. Если бы lim f(x) ф 6, то это означало бы существование такого числа е > 0, что при любом выборе 8 > 0 имеется точка х € А, удовлетворяющая условиям р(х, а) и d(f(x)y 6) > е. При сколь угодно малом S > О можно указать натуральное число N) такое, что 1 /N . Тогда для каждого номера п > N найдется хотя бы одна точка из А, которую обозначим хп, такая, что р(хп, ^ Таким образом, последовательность {хп}, составленная из таких точек хп 6 Ау в силу (8.11) стремится к а, тогда как {/(хп)} не стремится к 6, а это противоречит исходному предположению. Полученное противоречие доказывает достаточность условия теоремы. Эта теорема позволяет сформулировать определение, эквивалентное определению 8.1. Определение 8.3. Точку б€ У называют пределом отображения /: А -> У в точке а по множеству А, если при отображении / образ любой стремящейся к а последоваг тельности точек из А является последовательностью точек из У, стремящейся к Ь. Символические формы записи этого определения и теоремы 8.1 совпадают. Пример 8.2. Пусть X = R, А = R, а = +оо и в отображении /: R R f(x) = cos2 Vx 6 R. Покажем, что lim f(x) = lim cos a; не существует. Возьмем последовательность {a:n} = {2птг}, которая стремится к +оо. Тогда cosin = соз2птг = 1, и в силу (6.9) lim {cos xn} = 1. Если же взять последовательность {хп} = {(2п + 1)тг/2}, также стремящуюся к +оо, то ее образ сходится к нулю. Это противоречит определению 8.3 предела отображения, т.е. указанный выше предел не существует. Рассмотрение стремящихся к оо последовательностей {2п(-1)п7г} и {(2п+ 1)(-1)птг/2} приводит к тому же выводу. Отметим, что если обозначить то правомерна запись lim cosx = 1 и limcoex = 0. # Сопоставлением определений 8.1 и 5.13 может быть доказана следующая теорема. Теорема 8.2. Отображение /: X -+Y будет непрерывным в точке а € X в том и только том случае, когда предел отображения при стремлении х по множеству X к точке а совпадает со значением /(а), т.е. когда Л Пусть отображение / непрерывно в точке а в X. Тогда, по определению 5.13 непрерывного отображения, какова бы ни была окрестность V(6) точки 6 = /(а) € У, существует такая окрестность U(a) точки а € А} что /(U(a)) С V(6), а ТЕОРИЯ ПРЕДЕЛОВ. Понятие предела отображения стало быть, существует и проколотая окрестность U (а) точки а, такая, что /(U(a)) С V(b). Согласно определению 8.1 это означает, что справедливо (8.12). Обратно, пусть выполнено (8.12). Тогда в силу определения 8.1 для любой окрестности V (Ь) точки b = /(a) су- ществует проколотая окрестность U(a) точки а, такая, что /(U(a)) С V(6). Рассмотрим окрестность U(a) = U(a) U {a}. Поскольку /(a) G V(6), согласно свойствам отображения множеств (см. 2.1), имеем 4 т.е. отображение / по определению 5.13 непрерывно в точке аеХ. С учетом теоремы 8.2 можно сформулировать определение, эквивалентное определению 5.13. Определение 8.4. Отображение /: называют непрерывным в точке а 6 Ху если справедливо (8.12). Учитывая теоремы 8.1 и 8.2, получаем следующее утверждение. Утверждение 8.1. Для непрерывности отображения /: X -У Y в предельной точке абХ необходимо и достаточно, чтобы образ при отображении / любой стремящейся к а последовательности точек из X был последовательностью точек из У, сходящейся к точке /(а). 8.2. Некоторые свойства предела отображения Пусть X и У, так же как и в 8.1, - метрические пространства, AC X и а € X - предельная точка множества А. Теорема 8.3. Бели при стремлении х по множеству А к точке а отображение /: X У имеет предел, то он единственный. Предположим, что при х-^а отображение / имеет два предела 6i и 62, причем 61 ф 62. Тогда при выборе непересекающихся окрестностей этих точек (V(61)flV(62) = 0), по определению 8.1, у точки а существует проколотая окрестность U(a), такая, что и, а это невозможно в силу определения 2.1 отображения. Теорема 8.4 (о пределе композиции). Бели существуют пределы отображений /: AC X и д: У Z, причем {(х)фЬ при г-^a, где Ху У и Z - метрические пространства предельные точки соответственно для А С X и f(A) С У, то существует при х-^а и предел композиции (сложной функции) Выберем произвольную окрестность W (с) точки с. Тогда в силу определения 8.1 предела отображения всегда можно найти такую проколотую окрестность V(6) точки 6, что д(V(6) П f}

Лучшие статьи по теме