Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Новости
  • Криптографическая защита данных. Криптографические средства защиты

Криптографическая защита данных. Криптографические средства защиты

Средства криптографической защиты информации, или сокращенно СКЗИ, используются для обеспечения всесторонней защиты данных, которые передаются по линиям связи. Для этого необходимо соблюсти авторизацию и защиту электронной подписи, аутентификацию сообщающихся сторон с использованием протоколов TLS и IPSec, а также защиту самого канала связи при необходимости.

В России использование криптографических средств защиты информации по большей части засекречено, поэтому общедоступной информации касательно этой темы мало.

Методы, применяемые в СКЗИ

  • Авторизация данных и обеспечение сохранности их юридической значимости при передаче или хранении. Для этого применяют алгоритмы создания электронной подписи и ее проверки в соответствии с установленным регламентом RFC 4357 и используют сертификаты по стандарту X.509.
  • Защита конфиденциальности данных и контроль их целостности. Используется асимметричное шифрование и имитозащита, то есть противодействие подмене данных. Соблюдается ГОСТ Р 34.12-2015.
  • Защита системного и прикладного ПО. Отслеживание несанкционированных изменений или неверного функционирования.
  • Управление наиболее важными элементами системы в строгом соответствии с принятым регламентом.
  • Аутентификация сторон, обменивающихся данными.
  • Защита соединения с использованием протокола TLS.
  • Защита IP-соединений при помощи протоколов IKE, ESP, AH.

Подробным образом методы описаны в следующих документах: RFC 4357, RFC 4490, RFC 4491.

Механизмы СКЗИ для информационной защиты

  1. Защита конфиденциальности хранимой или передаваемой информации происходит применением алгоритмов шифрования.
  2. При установлении связи идентификация обеспечивается средствами электронной подписи при их использовании во время аутентификации (по рекомендации X.509).
  3. Цифровой документооборот также защищается средствами электронной подписи совместно с защитой от навязывания или повтора, при этом осуществляется контроль достоверности ключей, используемых для проверки электронных подписей.
  4. Целостность информации обеспечивается средствами цифровой подписи.
  5. Использование функций асимметричного шифрования позволяет защитить данные. Помимо этого для проверки целостности данных могут быть использованы функции хеширования или алгоритмы имитозащиты. Однако эти способы не поддерживают определения авторства документа.
  6. Защита от повторов происходит криптографическими функциями электронной подписи для шифрования или имитозащиты. При этом к каждой сетевой сессии добавляется уникальный идентификатор, достаточно длинный, чтобы исключить его случайное совпадение, и реализуется проверка принимающей стороной.
  7. Защита от навязывания, то есть от проникновения в связь со стороны, обеспечивается средствами электронной подписи.
  8. Прочая защита - против закладок, вирусов, модификаций операционной системы и т. д. - обеспечивается с помощью различных криптографических средств, протоколов безопасности, антивирусных ПО и организационных мероприятий.

Как можно заметить, алгоритмы электронной подписи являются основополагающей частью средства криптографической защиты информации. Они будут рассмотрены ниже.

Требования при использовании СКЗИ

СКЗИ нацелено на защиту (проверкой электронной подписи) открытых данных в различных информационных системах общего использования и обеспечения их конфиденциальности (проверкой электронной подписи, имитозащитой, шифрованием, проверкой хеша) в корпоративных сетях.

Персональное средство криптографической защиты информации используется для охраны персональных данных пользователя. Однако следует особо выделить информацию, касающуюся государственной тайны. По закону СКЗИ не может быть использовано для работы с ней.

Важно: перед установкой СКЗИ первым делом следует проверить сам пакет обеспечения СКЗИ. Это первый шаг. Как правило, целостность пакета установки проверяется путем сравнения контрольных сумм, полученных от производителя.

После установки следует определиться с уровнем угрозы, исходя из чего можно определить необходимые для применения виды СКЗИ: программные, аппаратные и аппаратно-программные. Также следует учитывать, что при организации некоторых СКЗИ необходимо учитывать размещение системы.

Классы защиты

Согласно приказу ФСБ России от 10.07.14 под номером 378, регламентирующему применение криптографических средств защиты информации и персональных данных, определены шесть классов: КС1, КС2, КС3, КВ1, КВ2, КА1. Класс защиты для той или иной системы определяется из анализа данных о модели нарушителя, то есть из оценки возможных способов взлома системы. Защита при этом строится из программных и аппаратных средств криптографической защиты информации.

АУ (актуальные угрозы), как видно из таблицы, бывают 3 типов:

  1. Угрозы первого типа связаны с недокументированными возможностями в системном ПО, используемом в информационной системе.
  2. Угрозы второго типа связаны с недокументированными возможностями в прикладном ПО, используемом в информационной системе.
  3. Угрозой третьего типа называются все остальные.

Недокументированные возможности - это функции и свойства программного обеспечения, которые не описаны в официальной документации или не соответствуют ей. То есть их использование может повышать риск нарушения конфиденциальности или целостности информации.

Для ясности рассмотрим модели нарушителей, для перехвата которых нужен тот или иной класс средств криптографической защиты информации:

  • КС1 - нарушитель действует извне, без помощников внутри системы.
  • КС2 - внутренний нарушитель, но не имеющий доступа к СКЗИ.
  • КС3 - внутренний нарушитель, который является пользователем СКЗИ.
  • КВ1 - нарушитель, который привлекает сторонние ресурсы, например специалистов по СКЗИ.
  • КВ2 - нарушитель, за действиями которого стоит институт или лаборатория, работающая в области изучения и разработки СКЗИ.
  • КА1 - специальные службы государств.

Таким образом, КС1 можно назвать базовым классом защиты. Соответственно, чем выше класс защиты, тем меньше специалистов, способных его обеспечивать. Например, в России, по данным за 2013 год, существовало всего 6 организаций, имеющих сертификат от ФСБ и способных обеспечивать защиту класса КА1.

Используемые алгоритмы

Рассмотрим основные алгоритмы, используемые в средствах криптографической защиты информации:

  • ГОСТ Р 34.10-2001 и обновленный ГОСТ Р 34.10-2012 - алгоритмы создания и проверки электронной подписи.
  • ГОСТ Р 34.11-94 и последний ГОСТ Р 34.11-2012 - алгоритмы создания хеш-функций.
  • ГОСТ 28147-89 и более новый ГОСТ Р 34.12-2015 - реализация алгоритмов шифрования и имитозащиты данных.
  • Дополнительные криптографические алгоритмы находятся в документе RFC 4357.

Электронная подпись

Применение средства криптографической защиты информации невозможно представить без использования алгоритмов электронной подписи, которые набирают все большую популярность.

Электронная подпись - это специальная часть документа, созданная криптографическими преобразованиями. Ее основной задачей являются выявление несанкционированного изменения и определение авторства.

Сертификат электронной подписи - это отдельный документ, который доказывает подлинность и принадлежность электронной подписи своему владельцу по открытому ключу. Выдача сертификата происходит удостоверяющими центрами.

Владелец сертификата электронной подписи - это лицо, на имя которого регистрируется сертификат. Он связан с двумя ключами: открытым и закрытым. Закрытый ключ позволяет создать электронную подпись. Открытый ключ предназначен для проверки подлинности подписи благодаря криптографической связи с закрытым ключом.

Виды электронной подписи

По Федеральному закону № 63 электронная подпись делится на 3 вида:

  • обычная электронная подпись;
  • неквалифицированная электронная подпись;
  • квалифицированная электронная подпись.

Простая ЭП создается за счет паролей, наложенных на открытие и просмотр данных, или подобных средств, косвенно подтверждающих владельца.

Неквалифицированная ЭП создается с помощью криптографических преобразований данных при помощи закрытого ключа. Благодаря этому можно подтвердить лицо, подписавшее документ, и установить факт внесения в данные несанкционированных изменений.

Квалифицированная и неквалифицированная подписи отличаются только тем, что в первом случае сертификат на ЭП должен быть выдан сертифицированным ФСБ удостоверяющим центром.

Область использования электронной подписи

В таблице ниже рассмотрены сферы применения ЭП.

Активнее всего технологии ЭП применяются в обмене документами. Во внутреннем документообороте ЭП выступает в роли утверждения документов, то есть как личная подпись или печать. В случае внешнего документооборота наличие ЭП критично, так как является юридическим подтверждением. Стоит также отметить, что документы, подписанные ЭП, способны храниться бесконечно долго и не утрачивать своей юридической значимости из-за таких факторов, как стирающиеся подписи, испорченная бумага и т. д.

Отчетность перед контролирующими органами - это еще одна сфера, в которой наращивается электронный документооборот. Многие компании и организации уже оценили удобство работы в таком формате.

По закону Российской Федерации каждый гражданин вправе пользоваться ЭП при использовании госуслуг (например, подписание электронного заявления для органов власти).

Онлайн-торги - еще одна интересная сфера, в которой активно применяется электронная подпись. Она является подтверждением того факта, что в торгах участвует реальный человек и его предложения могут рассматриваться как достоверные. Также важным является то, что любой заключенный контракт при помощи ЭП приобретает юридическую силу.

Алгоритмы электронной подписи

  • Full Domain Hash (FDH) и Public Key Cryptography Standards (PKCS). Последнее представляет собой целую группу стандартных алгоритмов для различных ситуаций.
  • DSA и ECDSA - стандарты создания электронной подписи в США.
  • ГОСТ Р 34.10-2012 - стандарт создания ЭП в РФ. Данный стандарт заменил собой ГОСТ Р 34.10-2001, действие которого официально прекратилось после 31 декабря 2017 года.
  • Евразийский союз пользуется стандартами, полностью аналогичными российским.
  • СТБ 34.101.45-2013 - белорусский стандарт для цифровой электронной подписи.
  • ДСТУ 4145-2002 - стандарт создания электронной подписи в Украине и множество других.

Стоит также отметить, что алгоритмы создания ЭП имеют различные назначения и цели:

  • Групповая электронная подпись.
  • Одноразовая цифровая подпись.
  • Доверенная ЭП.
  • Квалифицированная и неквалифицированная подпись и пр.

Введение

1.Экскурс в историю электронной криптографии

1.1 Основные задачи криптографии

1.2 Криптография сегодня

2. Основные понятия

2.1 Криптография

2.2 Конфиденциальность

2.3 Целостность

2.4 Аутентификация

2.5 Цифровая подпись

3. Криптографические средства защиты

3.1 Криптосистемы

3.2 Принципы работы Криптосистемы

3.2.1 Методология с использованием ключа

3.2.1.1 Симметричная (секретная методология)

3.2.1.2 Асимметричная (открытая методология)

3.3 Распространение ключей

3.4 Алгоритмы шифрования

3.4.1 Симметричные алгоритмы

3.4.2 Асимметричные алгоритмы

3.5 Хэш-функции

3.6 Механизмы аутентификации

3.7 Электронные подписи и временные метки

3.8 Стойкость шифра

Заключение

Список литературы

Введение


Криптография - наука о защите информации от прочтения ее посторонними. Защита достигается шифрованием, т.е. преобразованием, которые делают защищенные входные данные труднораск­рываемыми по входным данным без знания специальной ключевой ин­формации - ключа. Под ключом понимается легко изменяемая часть криптосистемы, хранящаяся в тайне и определяющая, какое шифрующие преобразование из возможных выполняется в данном случае. Крипто­система - семейство выбираемых с помощью ключа обратимых преобра­зований, которые преобразуют защищаемый открытый текст в шифрог­рамму и обратно.

Желательно, чтобы методы шифрования обладали минимум двумя свойствами:

Законный получатель сможет выполнить обратное преобразование и расшифровать сообщение;

Криптоаналитик противника, перехвативший сообщение, не сможет восстановить по нему исходное сообщение без таких затрат времени и средств, которые сделают эту работу нецелесообразной.

Цель курсовой работы: познакомиться с основами криптографической защиты информации. Для достижения данной цели в работе рассмотрены:

1. история криптографии, в которую включены основные задачи криптографии;

2. основные понятия криптографии (конфиденциальность, целостность, аутентификация, цифровая подпись);

3. криптографические средства защиты (криптосистемы, принципы работы криптосистемы, распространение ключей, алгоритмы шифрования и т.д.).


1.Экскурс в историю электронной криптографии


Появление в середине двадцатого столетия первых электронно-вычислительных машин кардинально изменило ситуацию в области шифрования (криптографии). С проникновением компьютеров в различные сферы жизни возникла принципиально новая отрасль - информационная индустрия. В 60-х и частично в 70-х годах проблема защиты информации решалась достаточно эффективно применением в основном организационных мер. К ним относились, прежде всего, режимные мероприятия, охрана, сигнализация и простейшие программные средства защиты информации. Эффективность использования указанных средств достигалась за счет концентрации информации на вычислительных центрах, как правило, автономных, что способствовало обеспечению защиты относительно малыми средствами. "Рассосредоточение" информации по местам ее хранения и обработки, чему в немалой степени способствовало появление в огромных количествах дешевых персональных компьютеров и построенных на их основе локальных и глобальных национальных и транснациональных сетей ЭВМ, использующих спутниковые каналы связи, создание высокоэффективных систем разведки и добычи информации, обострило ситуацию с защитой информации.

Проблема обеспечения необходимого уровня защиты информации оказалась (и это предметно подтверждено как теоретическими исследованиями, так и опытом практического решения) весьма сложной, требующей для своего решения не просто осуществления некоторой совокупности научных, научно-технических и организационных мероприятий и применения специфических средств и методов, а создания целостной системы организационных мероприятий и применения специфических средств и методов по защите информации.

Объем циркулирующей в обществе информации стабильно возрастает. Популярность всемирной сети Интернет в последние годы способствует удваиванию информации каждый год. Фактически, на пороге нового тысячелетия человечество создало информационную цивилизацию, в которой от успешной работы средств обработки информации зависит благополучие и даже выживание человечества в его нынешнем качестве. Произошедшие за этот период изменения можно охарактеризовать следующим образом:

Объемы обрабатываемой информации возросли за полвека на несколько порядков;

Доступ к определенным данным позволяет контролировать значительные материальные и финансовые ценности;

Информация приобрела стоимость, которую даже можно подсчитать;

Характер обрабатываемых данных стал чрезвычайно многообразным и более не сводится к исключительно текстовым данным;

Информация полностью "обезличилась", т.е. особенности ее материального представления потеряли свое значение - сравните письмо прошлого века и современное послание по электронной почте;

Характер информационных взаимодействий чрезвычайно усложнился, и наряду с классической задачей защиты передаваемых текстовых сообщений от несанкционированного прочтения и искажения возникли новые задачи сферы защиты информации, ранее стоявшие и решавшиеся в рамках используемых "бумажных" технологий - например, подпись под электронным документом и вручение электронного документа "под расписку" - речь о подобных "новых" задачах криптографии еще впереди;

Субъектами информационных процессов теперь являются не только люди, но и созданные ими автоматические системы, действующие по заложенной в них программе;

Вычислительные "способности" современных компьютеров подняли на совершенно новый уровень как возможности по реализации шифров, ранее немыслимых из-за своей высокой сложности, так и возможности аналитиков по их взлому. Перечисленные выше изменения привели к тому, что очень быстро после распространения компьютеров в деловой сфере практическая криптография сделала в своем развитии огромный скачок, причем сразу по нескольким направлениям:

Во-первых, были разработаны стойкие блочные с секретным ключом, предназначенные для решения классической задачи - обеспечения секретности и целостности, передаваемых или хранимых данных, они до сих пор остаются "рабочей лошадкой" криптографии, наиболее часто используемыми средствами криптографической защиты;

Во-вторых, были созданы методы решения новых, нетрадиционных задач сферы защиты информации, наиболее известными из которых являются задача подписи цифрового документа и открытого распределения ключей. В современном мире информационный ресурс стал одним из наиболее мощных рычагов экономического развития. Владение информацией необходимого качества в нужное время и в нужном месте является залогом успеха в любом виде хозяйственной деятельности. Монопольное обладание определенной информацией оказывается зачастую решающим преимуществом в конкурентной борьбе и предопределяет, тем самым, высокую цену "информационного фактора".

Широкое внедрение персональных ЭВМ вывело уровень "информатизации" деловой жизни на качественно новую ступень. Ныне трудно представить себе фирму или предприятие (включая самые мелкие), которые не были бы вооружены современными средствами обработки и передачи информации. В ЭВМ на носителях данных накапливаются значительные объемы информации, зачастую носящей конфиденциальный характер или представляющей большую ценность для ее владельца.

1.1. Основные задачи криптографии.


Задача криптографии, т.е. тайная передача, возникает только для информации, которая нуждается в защите. В таких случаях говорят, что информация содержит тайну или является защищаемой, приватной, конфиденциальной, секретной. Для наиболее типичных, часто встречающихся ситуаций такого типа введены даже специальные понятия:

Государственная тайна;

Военная тайна;

Коммерческая тайна;

Юридическая тайна;

1. имеется какой-то определенный круг законных пользователей, которые имеют право владеть этой информацией;

2. имеются незаконные пользователи, которые стремятся овладеть этой информацией с тем, чтобы обратить ее себе во благо, а законным пользователям во вред.

1.2. Криптография сегодня

Криптография - это наука об обеспечении безопасности данных. Она занимается поисками решений четырех важных проблем безопасности - конфиденциальности, аутентификации, целостности и контроля участников взаимодействия. Шифрование - это преобразование данных в нечитабельную форму, используя ключи шифрования-расшифровки. Шифрование позволяет обеспечить конфиденциальность, сохраняя информацию в тайне от того, кому она не предназначена.


2. Основные понятия.


Целью настоящего раздела является определение основных понятий криптографии.

2.1. Криптография.


В переводе с греческого языка слово криптография означает тайнопись. Смысл этого термина выражает основное предназначение криптографии – защитить или сохранить в тайне необходимую информацию.

Криптография дает средства для защиты информации, и поэтому она является частью деятельности по обеспечению безопасности информации.

Существуют различные методы защиты информации . Можно, например, физически ограничить доступ к информации путем хранения ее в надежном сейфе или строго охраняемом помещении. При хранении информации такой метод удобен, однако при ее передаче приходится использовать другие средства.

Можно воспользоваться одним из известных методов сокрытия информации:

· скрыть канал передачи информации, используя нестандартный способ передачи сообщений;

· замаскировать канал передачи закрытой информации в открытом канале связи, например, спрятав информацию в безобидном «контейнере» с использованием тех или других стенографических способов либо обмениваясь открытыми сообщениями, смысл которых согласован заранее;

· существенно затруднить возможность перехвата, противником передаваемых сообщений, используя специальные методы передачи по широкополосным каналам, сигнала под уровнем шумов, либо с использованием «прыгающих» несущих частот и т.п.

В отличие от перечисленных методов криптография не «прячет» передаваемые сообщения, а преобразует их в форму, недоступную для понимания противником. При этом обычно исходят из предположения о полном контроле противником канала связи. Это означает, что противник может не только пассивно перехватывать передаваемые сообщения для последующего их анализа, но и активно изменять их, а также отправлять поддельные сообщения от имени одного из абонентов.

Также существуют и другие проблемы защиты передаваемой информации. Например, при полностью открытом обмене возникает проблема достоверности полученной информации. Для ее решения необходимо обеспечить:

· проверку и подтверждение подлинности содержания источника сообщения;

· предотвращение и обнаружение обмана и других умышленных нарушений со стороны самих участников информационного обмена.

Для решения этой проблемы обычные средства, применяемые при построении систем передачи информации, подходят далеко не всегда. Именно криптография дает средства для обнаружения обмана в виде подлога или отказа от ранее совершенных действий, а также других неправомерных действий.

Поэтому, современная криптография является областью знаний, связанной с решением таких проблем безопасности информации, как конфиденциальность, целостность, аутентификация и невозможность отказа сторон от авторства. Достижение этих требований и составляет основные цели криптографии.

Обеспечение конфиденциальности –решение проблемы защиты информации от ознакомления с ее содержанием со стороны лиц, не имеющих права доступа к ней.

Обеспечение целостности –гарантирование невозможности несанкционированного изменения информации. Для гарантии целостности необходим простой и надежный критерий обнаружения любых манипуляций с данными. Манипуляции с данными включают вставку, удаление и замену.

Обеспечение аутентификации -разработка методов подтверждения подлинности сторон (идентификация) и самой информации в процессе информационного взаимодействия. Информация, передаваемая по каналу связи, должна быть аутентифицирована по источнику, времени создания, содержанию данных, времени пересылки и т.д.

2.2 Конфиденциальность


Традиционной задачей криптографии является проблема обеспечения конфиденциальности информации при передаче сообщений по контролируемому противником каналу связи. В простейшем случае эта задача описывается взаимодействием трех субъектов (сторон). Владелец информации, называемый обычно отправителем , осуществляет преобразование исходной (открытой ) информации (сам процесс преобразования называется шифрованием ) в форму передаваемых получателю по открытому каналу связи шифрованных сообщений с целью ее защиты от противника.

Рис. 1. Передача шифрованной информации

Отправитель Противник Получатель

Под противником понимается любой субъект, не имеющий права ознакомления с содержанием передаваемой информации. В качестве противника может выступать криптоаналитик , владеющий методами раскрытия шифров. Законный получатель информации осуществляет расшифрование полученных сообщений. Противник пытается овладеть защищаемой информацией (его действия обычно называют атаками ). При этом он может совершать как пассивные, так и активные действия. Пассивные атаки связаны с прослушиванием, анализом трафика, перехватом, записью передаваемых шифрованных сообщений, дешифрованием , т.е. попытками «взломать» защиту с целью овладения информацией.

При проведении активных атак противник может прерывать процесс передачи сообщений, создавать поддельные (сфабрикованные) или модифицировать передаваемые шифрованные сообщения. Эти активные действия называют имитации и подмены соответственно.

Под шифром обычно понимается семейство обратимых преобразований, каждое из которых определяется некоторым параметром, называемым ключом, а также порядком применения данного преобразования, называемым режимом преобразования . Формальное определение шифра будет дано ниже.

Ключ - это важнейший компонент шифра, отвечающий за выбор преобразования, применяемого для зашифрования конкретного сообщения. Обычно ключ представляет собой некоторую буквенную или числовую последовательность. Эта последовательность как бы «настраивает» алгоритм шифрования.

Каждое преобразование однозначно определяется ключом и описывается некоторым криптографическим алгоритмом . Один и тот же криптографический алгоритм может применяться для шифрования в различных режимах. Тем самым реализуются различные способы шифрования (простая замена, гаммирование т.п.). Каждый режим шифрования имеет как свои преимущества, так и недостатки. Поэтому выбор режима зависит от конкретной ситуации. При расшифровании используется криптографический алгоритм, который в общем случае может отличаться от алгоритма, применяемого для зашифрования сообщения. Соответственно могут различать ключи зашифрования и расшифрования. Пару алгоритмов зашифрования и расшифрования обычно называют шифрсистемой , а реализующие их устройства - шифртехникой .

2.3. Целостность


Наряду с конфиденциальностью не менее важной задачей является обеспечение целостности информации, другими словами,- неизменности ее в процессе передачи или хранении. Решение этой задачи предполагает разработку средств, позволяющих обнаруживать не столько случайные искажения (для этой цели вполне подходят методы теории кодирования с обнаружением и исправлением ошибок), сколько целенаправленное навязывание противником ложной информации. Для этого в передаваемую информацию вносится избыточность. Как правило, это достигается добавлением к сообщению некоторой проверочной комбинации, вычисляемой с помощью специального алгоритма и играющей роль контрольной суммы для проверки целостности полученного сообщения. Главное отличие такого метода от методов теории кодирования состоит в том, что алгоритм выработки проверочной комбинации является «криптографическим», то есть зависящим от секретного ключа. Без знания секретного ключа вероятность успешного навязывания противником искаженной или ложной информации мала. Такая вероятность служит мерой имитостойкости шифра, то есть способности самого шифра противостоять активным атакам со стороны противника.


2.4. Аутентификация


Аутентификация - установление подлинности. В общем случае этот термин может относиться ко всем аспектам информационного взаимодействия: сеансу связи, сторонам, передаваемым сообщениям и т.д.

Установление подлинности (то есть проверка и подтверждение) всех аспектов информационного взаимодействия является важной составной частью проблемы обеспечения достоверности получаемой информации. Особенно остро эта проблема стоит в случае не доверяющих друг другу сторон, когда источником угроз может служить не только третья сторона (противник), но и сторона, с которой осуществляется взаимодействие.

Рассмотрим эти вопросы.

Применительно к сеансу связи (транзакции) аутентификация означает проверку: целостности соединения, невозможности повторной передачи данных противником и своевременности передачи данных. Для этого, как правило, используют дополнительные параметры, позволяющие «сцепить» передаваемые данные в легко проверяемую последовательность. Это достигается, например, путем вставки в сообщения некоторых специальных чисел или меток времени . Они позволяют предотвратить попытки повторной передачи, изменения порядка следования или обратной отсылки части переданных сообщений. При этом такие вставки в передаваемом сообщении необходимо защищать (например, с помощью шифрования) от возможных подделок и искажений.

Применительно к сторонам взаимодействия аутентификация означает проверку одной из сторон того, что взаимодействующая сторона - именно та, за которую она себя выдает. Часто аутентификацию сторон называют также идентификацией .

Основным средством для проведения идентификации являются протоколы идентификации , позволяющие осуществлять идентификацию (и аутентификацию) каждой из участвующих во взаимодействии и не доверяющих друг другу сторон. Различают протоколы односторонней и взаимной идентификации .

Протокол - это распределенный алгоритм, определяющий последовательность действий каждой из сторон. В процессе выполнения протокола идентификации каждая из сторон не передает никакой информации о своем секретном ключе, а хранит его у себя и использует для формирования ответных сообщений на запросы, поступающие при выполнении протокола.

Наконец, применительно к самой информации аутентификация означает проверку того, что информация, передаваемая по каналу, является подлинной по содержанию, источнику, времени создания, времени пересылки и т.д.

Проверка подлинности содержания информации сводится, по сути, к проверке ее неизменности (с момента создания) в процессе передачи или хранения, то есть проверке целостности.

Аутентификация источника данных означает подтверждение того, что исходный документ был создан именно заявленным источником.

Заметим, что если стороны доверяют друг другу и обладают общим секретным ключом, то аутентификацию сторон можно обеспечить применением кода аутентификации. Действительно, каждое успешно декорированное получателем сообщение может быть создано только отправителем, так как только он знает их общий секретный ключ. Для не доверяющих друг другу сторон решение подобных задач с использованием общего секретного ключа становится невозможным. Поэтому при аутентификации источника данных нужен механизм цифровой подписи, который будет рассмотрен ниже.

В целом, аутентификация источника данных выполняет ту же роль, что и протокол идентификации. Отличие заключается только в том, что в первом случае имеется некоторая передаваемая информация, авторство которой требуется установить, а во втором требуется просто установить сторону, с которой осуществляется взаимодействие.


2.5. Цифровая подпись


В некоторых ситуациях, например в силу изменившихся обстоятельств, отдельные лица могут отказаться от ранее принятых обстоятельств. В связи с этим необходим некоторый механизм, препятствующий подобным попыткам.

Так как в данной ситуации предполагается, что стороны не доверяют друг другу, то использование общего секретного ключа для решения поставленной проблемы становится невозможным. Отправитель может отказаться от факта передачи сообщения, утверждая, что его создал сам получатель (отказ от авторства ). Получатель легко может модифицировать, подменить или создать новое сообщение, а затем утверждать, что оно получено от отправителя (приписывание авторства ). Ясно, что в такой ситуации арбитр при решении спора не будет иметь возможность установить истину.

Основным механизмом решения этой проблемы является так называемая цифровая подпись .

Схема цифровой подписи включает два алгоритма, один - для вычисления, а второй - для проверки подписи. Вычисление подписи может быть выполнено только автором подписи. Алгоритм проверки должен быть общедоступным, чтобы проверить правильность подписи мог каждый.

Для создания схемы цифровой подписи можно использовать симметричные шифрсистемы. В этом случае подписью может служить само зашифрованное на секретном ключе сообщение. Однако основной недостаток таких подписей состоит в том, что они являются одноразовыми: после каждой проверки секретный ключ становится известным. Единственный выход из этой ситуации в рамках использования симметричных шифрсистем - это введение доверенной третьей стороны, выполняющей функции посредника, которому доверяют обе стороны. В этом случае вся информация пересылается через посредника, он осуществляет перешифрование сообщений с ключа одного из абонентов на ключ другого. Естественно, эта схема является крайне неудобной.

Два подхода к построению системы цифровой подписи при использовании шифрсистем с открытым ключом:

1. В преобразовании сообщения в форму, по которой можно восстановить само сообщение и тем самым проверить правильность «подписи». В данном случае подписанное сообщение имеет ту же длину, что и исходное сообщение. Для создания такого «подписанного сообщения» можно, например, произвести зашифрование исходного сообщения на секретном ключе автора подписи. Тогда каждый может проверить правильность подписи путем расшифрования подписанного сообщения на открытом ключе автора подписи;

2. Подпись вычисляется и передается вместе с исходным сообщением. Вычисление подписи заключается в преобразовании исходного сообщения в некоторую цифровую комбинацию (которая и является подписью). Алгоритм вычисления подписи должен зависеть от секретного ключа пользователя. Это необходимо для того, чтобы воспользоваться подписью мог бы только владелец ключа. В свою очередь, алгоритм проверки правильности подписи должен быть доступен каждому. Поэтому этот алгоритм зависит от открытого ключа пользователя. В данном случае длина подписи не зависит от длины подписываемого сообщения.

С проблемой цифровой подписи возникла проблема построения бесключевых криптографических хэш-функций . Дело в том, что при вычислении цифровой подписи оказывается более удобным осуществить сначала хэш-функции, то есть свертку текста в некоторую комбинацию фиксированной длины, а затем уже подписывать полученную комбинацию с помощью секретного ключа. При этом функция хэширования, хотя и не зависит от ключа и является открытой, должна быть «криптографической». Имеется в виду свойство односторонности этой функции: по значению комбинации- свертки никто не должен иметь возможность подобрать соответствующее сообщение.

В настоящее время имеются стандарты на криптографические хэш-функции, утверждаемые независимо от стандартов на криптографические алгоритмы и схемы цифровой подписи.


3. Криптографические средства защиты.


Криптографическими средствами защиты называются специальные средства и методы преобразования информации, в результате которых маскируется ее содержание. Основными видами криптографического закрытия являются шифрование и кодирование защищаемых данных. При этом шифрование есть такой вид закрытия, при котором самостоятельному преобразованию подвергается каждый символ закрываемых данных; при кодировании защищаемые данные делятся на блоки, имеющие смысловое значение, и каждый такой блок заменяется цифровым, буквенным или комбинированным кодом. При этом используется несколько различных систем шифрования: заменой, перестановкой, гаммированием, аналитическим преобразованием шифруемых данных. Широкое распространение получили комбинированные шифры, когда исходный текст последовательно преобразуется с использованием двух или даже трех различных шифров.

3.1 Криптосистемы

Криптосистема работает по определенной методологии (процедуре). Она состоит из:

ü одного или более алгоритмов шифрования (математических формул);

ü ключей, используемых этими алгоритмами шифрования;

ü системы управления ключами;

ü незашифрованного текста;

ü и зашифрованного текста (шифртекста).

Ключ Ключ

Текст алгоритм шифртекст алгоритм Текст

шифрования расшифровки

Методология

Согласно методологии сначала к тексту применяются алгоритм шифрования и ключ для получения из него шифртекста. Затем шифртекст передается к месту назначения, где тот же самый алгоритм используется для его расшифровки, чтобы получить снова текст. Также в методологию входят процедуры создания ключей и их распространения (не показанные на рисунке).

3.2 Принципы работы Криптосистемы.


Типичный пример изображения ситуации, в которой возникает задача криптографии (шифрования) изображён на рис. 1:




На рис.2. А и В - законные пользователи защищённой информации, они хотят обмениваться информацией по общедоступному каналу связи. П - незаконный пользователь (противник , хакер ), который хочет перехватывать передаваемые по каналу связи сообщения и попытаться извлечь из них интересную для него информацию. Эту простую схему можно считать моделью типичной ситуации, в которой применяются криптографические методы защиты информации или просто шифрование. Исторически в криптографии закрепились некоторые военные слова (противник, атака на шифр и др.). Они наиболее точно отражают смысл соответствующих криптографических понятий. Вместе с тем широко известная военная терминология, основанная на понятии кода (военно-морские коды, коды Генерального штаба, кодовые книги, кодобозначения и т. п.), уже не применяется в теоретической криптографии. Дело в том, что за последние десятилетия сформировалась теория кодирования - большое научное направление, которое разрабатывает и изучает методы защиты информации от случайных искажений в каналах связи.

Криптография занимается методами преобразования информации, которые бы не позволили противнику извлечь ее из перехватываемых сообщений. При этом по каналу связи передается уже не сама защищаемая информация, а результат ее преобразования с помощью шифра, и для противника возникает сложная задача вскрытия шифра. Вскрытие (взламывание ) шифра - процесс получения защищаемой информации из шифрованного сообщения без знания примененного шифра.

Противник может пытаться не получить, а уничтожить или модифицировать защищаемую информацию в процессе ее передачи. Это - совсем другой тип угроз для информация, отличный от перехвата и вскрытия шифра. Для защиты от таких угроз разрабатываются свои специфические методы.

Следовательно, на пути от одного законного пользователя к другому информация должна защищаться различными способами, противостоящими различным угрозам. Возникает ситуация цепи из разнотипных звеньев, которая защищает информацию. Естественно, противник будет стремиться найти самое слабое звено, чтобы с наименьшими затратами добраться до информации. А значит, и законные пользователи должны учитывать это обстоятельство в своей стратегии защиты: бессмысленно делать какое-то звено очень прочным, если есть заведомо более слабые звенья ("принцип равнопрочности защиты").

Придумывание хорошего шифра дело трудоемкое. Поэтому желательно увеличить время жизни хорошего шифра и использовать его для шифрования как можно большего количества сообщений. Но при этом возникает опасность, что противник уже разгадал (вскрыл) шифр и читает защищаемую информацию. Если же в шифре сеть сменный ключ то, заменив ключ, можно сделать так, что разработанные противником методы уже не дают эффекта.

3.2.1 Методология с использованием ключа

В этой методологии алгоритм шифрования объединяет ключ с текстом для создания шифртекста. Безопасность систем шифрования такого типа зависит от конфиденциальности ключа, используемого в алгоритме шифрования, а не от хранения в тайне самого алгоритма. Многие алгоритмы шифрования общедоступны и были хорошо проверены благодаря этому (например, DES). Но основная проблема, связанная с этой методологией, состоит в том, как сгенерировать и безопасно передать ключи участникам взаимодействия. Как установить безопасный канал передачи информации между участниками взаимодействия до передачи ключей?

Другой проблемой является аутентификация. При этом существуют две серьезных проблемы:

· Сообщение шифруется кем-то, кто владеет ключом в данный момент. Это может быть владелец ключа;

· Но если система скомпрометирована, это может быть другой человек.

· Когда участники взаимодействия получают ключи, откуда они могут узнать, что эти ключи на самом деле были

· созданы и посланы уполномоченным на это лицом?

Существуют две методологии с использованием ключей - симметричная (с секретным ключом) и асимметричная (с открытым ключом). Каждая методология использует свои собственные процедуры, свои способы распределения ключей, типы ключей и алгоритмы шифрования и расшифровки ключей. Так как терминология, используемая этими методологиями, может показаться непонятной, дадим определения основным терминам:

Термин

Значение

Замечания

Симметричная методология

Используется один ключ, с помощью которого производится как шифрование, так и расшифровка с использованием одного и того алгоритма симметричного шифрования. Этот ключ передается двум участникам взаимодействия безопасным образом до передачи зашифрованных данных.

Часто называется с методологией с секретным ключом.

Асимметричная методология

Использует алгоритмы симметричного шифрования и симметричные ключи для шифрования данных. Использует алгоритмы асимметричного шифрования и асимметричные ключи для шифрования симметричного ключа. Создаются два взаимосвязанных асимметричных ключа. Симметричный ключ, зашифрованный с использованием одного асимметричного ключа и алгоритма асимметричного шифрования, должен расшифровываться с использованием другого ключа и другого алгоритма шифрования. Создаются два взаимосвязанных асимметричных ключа. Один должен быть безопасно передан его владельцу, а другой - тому лицу, которое отвечает за хранение этих ключей (СА- сертификационному центру ключей), до начала их использования.

Часто называется методологией с открытым ключом.

Секретный ключ (1)

Симметричная методология.

Использует один ключ, с помощью которого производится как шифрование, так и расшифровка. См. выше.

Секретный ключ (2)

Секретный ключ симметричного шифрования.

Симметричный секретный ключ.

Секретный ключ (3)

Секретный ключ асимметричного шифрования

Асимметричный ключ. Асимметричные ключи создаются парами, так как связаны друг с другом. Выражение «секретный ключ» часто используют для одного из пары асимметричных ключей, который должен держаться в секрете. Асимметричный секретный ключ не имеет ничего общего с симметричным секретным ключом.

Открытый ключ (1)

Асимметричная методология

Использует пару ключей, которые совместно создаются и связаны друг с другом. Все, что зашифровано одним ключом, может быть расшифровано только другим ключом этой пары.

Открытый ключ (2)

Открытый ключ асимметричного шифрования

Асимметричные ключи создаются парами, каждый из двух ключей связан с другим.

Выражение "открытый ключ" часто используют для одного из пары асимметричных ключей, который должен быть всем известен.

Сеансовый ключ

Симметричный (секретный) ключ шифрования

Используется в асимметричной методологии для шифрования самих данных с помощью симметричных методологий. Это просто симметричный секретный ключ (см. выше).

Алгоритм шифрования

Математическая формула

Для симметричных алгоритмов требуются симметричные ключи. Для асимметричных алгоритмов требуются асимметричные ключи. Вы не можете использовать симметричные ключи для асимметричных алгоритмов и наоборот.

Секретные криптосистемы


Открытые криптосистемы

Использует асимметричные алгоритмы и асимметричные ключи для шифрования сеансовых ключей.

Используют симметричные алгоритмы и симметричные (секретные) ключи для шифрования данных.


3.2.1.1 Симметричная (секретная) методология

В этой методологии и для шифрования, и для расшифровки отправителем и получателем применяется один и тот же ключ, об использовании которого они договорились до начала взаимодействия. Если ключ не был скомпрометирован, то при расшифровке автоматически выполняется аутентификация отправителя, так как только отправитель имеет ключ, с помощью которого можно зашифровать информацию, и только получатель имеет ключ, с помощью которого можно расшифровать информацию. Так как отправитель и получатель - единственные люди, которые знают этот симметричный ключ, при компрометации ключа будет скомпрометировано только взаимодействие этих двух пользователей. Проблемой, которая будет актуальна и для других криптосистем, является вопрос о том, как безопасно распространять симметричные (секретные) ключи. Алгоритмы симметричного шифрования используют ключи не очень большой длины и могут быстро шифровать большие объемы данных.

Порядок использования систем с симметричными ключами:

1. Безопасно создается, распространяется и сохраняется симметричный секретный ключ.

2. Отправитель создает электронную подпись с помощью расчета хэш-функции для текста и присоединения полученной строки к тексту.

3. Отправитель использует быстрый симметричный алгоритм шифрования-расшифровки вместе с секретным симметричным ключом к полученному пакету (тексту вместе с присоединенной электронной подписью) для получения зашифрованного текста. Неявно, таким образом, производится аутентификация, так как только отправитель знает симметричный секретный ключ и может зашифровать этот пакет.

4. Только получатель знает симметричный секретный ключ и может расшифровать этот пакет.

5. Отправитель передает зашифрованный текст. Симметричный секретный ключ никогда не передается по незащищенным каналам связи.

6. Получатель использует тот же самый симметричный алгоритм шифрования-расшифровки вместе с тем же самым симметричным ключом (который уже есть у получателя) к зашифрованному тексту для восстановления исходного текста и электронной подписи. Его успешное восстановление аутентифицирует кого-то, кто знает секретный ключ.

7. Получатель отделяет электронную подпись от текста.

8. Получатель создает другую электронную подпись с помощью расчета хэш-функции для полученного текста.

9. Получатель сравнивает две этих электронных подписи для проверки целостности сообщения (отсутствия его искажения).

Доступными сегодня средствами, в которых используется симметричная методология, являются:

· Kerberos, который был разработан для аутентификации доступа к ресурсам в сети, а не для верификации данных. Он использует центральную базу данных, в которой хранятся копии секретных ключей всех пользователей.

· Сети банкоматов (ATM Banking Networks). Эти системы являются оригинальными разработками владеющих ими банков и не продаются. В них также используются симметричные методологии.

3.2.1.2 Асимметричная (открытая) методология

В этой методологии ключи для шифрования и расшифровки разные, хотя и создаются вместе. Один ключ делается известным всем, а другой держится в тайне. Хотя можно шифровать и расшифровывать обоими ключами, данные, зашифрованные одним ключом, могут быть расшифрованы только другим ключом. Все асимметричные криптосистемы являются объектом атак путем прямого перебора ключей, и поэтому в них должны использоваться гораздо более длинные ключи, чем те, которые используются в симметричных криптосистемах, для обеспечения эквивалентного уровня защиты. Это сразу же сказывается на вычислительных ресурсах, требуемых для шифрования, хотя алгоритмы шифрования на эллиптических кривых могут смягчить эту проблему.

Брюс Шнейер в книге "Прикладная криптография: протоколы, алгоритмы и исходный текст на C" приводит следующие данные об эквивалентных длинах ключей.


Для того чтобы избежать низкой скорости алгоритмов асимметричного шифрования, генерируется временный симметричный ключ для каждого сообщения и только он шифруется асимметричными алгоритмами. Само сообщение шифруется с использованием этого временного сеансового ключа и алгоритма шифрования/расшифровки, описанного в пункте 2.2.1.1. Затем этот сеансовый ключ шифруется с помощью открытого асимметричного ключа получателя и асимметричного алгоритма шифрования. После этого этот зашифрованный сеансовый ключ вместе с зашифрованным сообщением передается получателю. Получатель использует тот же самый асимметричный алгоритм шифрования и свой секретный ключ для расшифровки сеансового ключа, а полученный сеансовый ключ используется для расшифровки самого сообщения. В асимметричных криптосистемах важно, чтобы сеансовые и асимметричные ключи были сопоставимы в отношении уровня безопасности, который они обеспечивают. Если используется короткий сеансовый ключ (например, 40-битовый DES), то не имеет значения, насколько велики асимметричные ключи. Хакеры будут атаковать не их, а сеансовые ключи. Асимметричные открытые ключи уязвимы к атакам прямым перебором отчасти из-за того, что их тяжело заменить. Если атакующий узнает секретный асимметричный ключ, то будет скомпрометирован не только текущее, но и все последующие взаимодействия между отправителем и получателем.

Порядок использования систем с асимметричными ключами:

1. Безопасно создаются и распространяются асимметричные открытые и секретные ключи (см. раздел 2.2 ниже). Секретный асимметричный ключ передается его владельцу. Открытый асимметричный ключ хранится в базе данных X.500 и администрируется центром выдачи сертификатов (по-английски - Certification Authority или CA). Подразумевается, что пользователи должны верить, что в такой системе производится безопасное создание, распределение и администрирование ключами. Более того, если создатель ключей и лицо или система, администрирующие их, не одно и то же, то конечный пользователь должен верить, что создатель ключей на самом деле уничтожил их копию.

2. Создается электронная подпись текста с помощью вычисления его хэш-функции. Полученное значение шифруется с использованием асимметричного секретного ключа отправителя, а затем полученная строка символов добавляется к передаваемому тексту (только отправитель может создать электронную подпись).

3. Создается секретный симметричный ключ, который будет использоваться для шифрования только этого сообщения или сеанса взаимодействия (сеансовый ключ), затем при помощи симметричного алгоритма шифрования/расшифровки и этого ключа шифруется исходный текст вместе с добавленной к нему электронной подписью - получается зашифрованный текст (шифр-текст).

4. Теперь нужно решить проблему с передачей сеансового ключа получателю сообщения.

5. Отправитель должен иметь асимметричный открытый ключ центра выдачи сертификатов (CA). Перехват незашифрованных запросов на получение этого открытого ключа является распространенной формой атаки. Может существовать целая система сертификатов, подтверждающих подлинность открытого ключа CA. Стандарт X.509 описывает ряд методов для получения пользователями открытых ключей CA, но ни один из них не может полностью защитить от подмены открытого ключа CA, что наглядно доказывает, что нет такой системы, в которой можно было бы гарантировать подлинность открытого ключа CA.

6. Отправитель запрашивает у CA асимметричный открытый ключ получателя сообщения. Этот процесс уязвим к атаке, в ходе которой атакующий вмешивается во взаимодействие между отправителем и получателем и может модифицировать трафик, передаваемый между ними. Поэтому открытый асимметричный ключ получателя "подписывается" CA. Это означает, что CA использовал свой асимметричный секретный ключ для шифрования асимметричного открытого ключа получателя. Только CA знает асимметричный секретный ключ CA, поэтому есть гарантии того, что открытый асимметричный ключ получателя получен именно от CA.

7. После получения асимметричный открытый ключ получателя расшифровывается с помощью асимметричного открытого ключа CA и алгоритма асимметричного шифрования/расшифровки. Естественно, предполагается, что CA не был скомпрометирован. Если же он оказывается скомпрометированным, то это выводит из строя всю сеть его пользователей. Поэтому можно и самому зашифровать открытые ключи других пользователей, но где уверенность в том, что они не скомпрометированы?

8. Теперь шифруется сеансовый ключ с использованием асимметричного алгоритма шифрования-расшифровки и асимметричного ключа получателя (полученного от CA и расшифрованного).

9. Зашифрованный сеансовый ключ присоединяется к зашифрованному тексту (который включает в себя также добавленную ранее электронную подпись).

10. Весь полученный пакет данных (зашифрованный текст, в который входит помимо исходного текста его электронная подпись, и зашифрованный сеансовый ключ) передается получателю. Так как зашифрованный сеансовый ключ передается по незащищенной сети, он является очевидным объектом различных атак.

11. Получатель выделяет зашифрованный сеансовый ключ из полученного пакета.

12. Теперь получателю нужно решить проблему с расшифровкой сеансового ключа.

13. Получатель должен иметь асимметричный открытый ключ центра выдачи сертификатов (CA).

14. Используя свой секретный асимметричный ключ и тот же самый асимметричный алгоритм шифрования получатель расшифровывает сеансовый ключ.

15. Получатель применяет тот же самый симметричный алгоритм шифрования-расшифровки и расшифрованный симметричный (сеансовый) ключ к зашифрованному тексту и получает исходный текст вместе с электронной подписью.

16. Получатель отделяет электронную подпись от исходного текста.

17. Получатель запрашивает у CA асимметричный открытый ключ отправителя.

18. Как только этот ключ получен, получатель расшифровывает его с помощью открытого ключа CA и соответствующего асимметричного алгоритма шифрования-расшифровки.

19. Затем расшифровывается хэш-функция текста с использованием открытого ключа отправителя и асимметричного алгоритма шифрования-расшифровки.

20. Повторно вычисляется хэш-функция полученного исходного текста.

21. Две эти хэш-функции сравниваются для проверки того, что текст не был изменен.

3.3 Распространение ключей

Ясно, что в обеих криптосистемах нужно решать проблему распространения ключей.

В симметричных методологиях эта проблема стоит более остро, и поэтому в них ясно определяется, как передавать ключи между участниками взаимодействия до начала взаимодействия. Конкретный способ выполнения этого зависит от требуемого уровня безопасности. Если не требуется высокий уровень безопасности, то ключи можно рассылать с помощью некоторого механизма доставки (например, с помощью простой почты или курьерской службы). Банки, например, используют почту для рассылки PIN-кодов. Для обеспечения более высокого уровня безопасности более уместна ручная доставка ключей ответственными за это людьми, возможно по частям несколькими людьми.

Асимметричные методологии пытаются обойти эту проблему с помощью шифрования симметричного ключа и присоединения его в таком виде к зашифрованным данным. А для распространения открытых асимметричных ключей, используемых для шифрования симметричного ключа, в них используются центры сертификации ключей. CA, в свою очередь, подписывают эти открытые ключи с помощью секретного асимметричного ключа CA. Пользователи такой системы должны иметь копию открытого ключа CA. Теоретически это означает, что участникам взаимодействия не нужно знать ключей друг друга до организации безопасного взаимодействия.

Сторонники асимметричных систем считают, что такого механизма достаточно для обеспечения аутентичности абонентов взаимодействия. Но проблема все равно остается. Пара асимметричных ключей должна создаваться совместно. Оба ключа, независимо от того, доступны они всем или нет, должны быть безопасно посланы владельцу ключа, а также центру сертификации ключей. Единственный способ сделать это - использовать какой-либо способ доставки при невысоких требованиях к уровню безопасности, и доставлять их вручную - при высоких требованиях к безопасности.

Проблема с распространением ключей в асимметричных системах состоит в следующем:

· X.509 подразумевает, что ключи безопасно раздаются, и не описывает способ решения этой проблемы - а только указывает на существование этой проблемы. Не существует стандартов для решения этого. Для безопасности ключи должны доставляться вручную (независимо от того, симметричные они или асимметричные).

· Нет надежного способа проверить, между какими компьютерами осуществляется взаимодействие. Есть вид атаки, при котором атакующий маскируется под CA и получает данные, передаваемые в ходе взаимодействия. Для этого атакующему достаточно перехватить запрос к центру сертификации ключей и подменить его ключи своими. Эта атака может успешно продолжаться в течение длительного времени.

· Электронная подпись ключей центром сертификации ключей не всегда гарантирует их аутентичность, так как ключ самого CA может оказаться скомпрометированным. X.509 описывает способ электронной подписи ключей CA центрами сертификации ключей более высокого уровня и называет его "путь сертификации". X.509 рассматривает проблемы, связанные с проверкой корректности открытого ключа, предполагая, что эта проблема может быть решена только при отсутствии разрыва в цепочке доверенных мест в распределенном справочнике открытых ключей пользователей. Нет способа обойти это.

· X.509 предполагает, что пользователь уже имеет доступ к открытому ключу CA. Как это осуществляется, в нем не определяется.

· Компрометация центра сертификации ключей весьма реальная угроза. Компрометация CA означает. Что все пользователи этой системы будут скомпрометированы. И никто не будет знать об этом. X.509 предполагает, что все ключи, включая ключи самого CA, хранятся в безопасном месте. Внедрение системы справочников X.509 (где хранятся ключи) довольно сложно, и уязвимо к ошибкам в конфигурации. В настоящее время слишком мало людей обладают техническими знаниями, необходимыми для правильного администрирования таких систем. Более того, понятно, что на людей, занимающих такие важные должности, может быть оказано давление.

· CA могут оказаться узким местом. Для обеспечения устойчивости к сбоям X.509 предлагает, чтобы база данных CA была реплицирована с помощью стандартных средств X.500; это значительно увеличит стоимость криптосистемы. А при маскараде под CA будет трудно определить, какая система была атакована. Более того, все данные из базы данных CA должны посылаться по каналам связи каким-то образом.

· Система справочников X.500 сложна в установке, конфигурировании и администрировании. Доступ к этому справочнику должен предоставляться либо с помощью дополнительной службы подписки, либо организации придется самой ее организовывать. Сертификат X.509 предполагает, что каждый человек имеет уникальное имя. Выделение имен людям - задача еще одной доверенной службы - службы именования.

· Сеансовые ключи, несмотря на то, что шифруются, все-таки передаются по незащищенным каналам связи.

Несмотря на все эти серьезные недостатки, пользователь должен неявно доверять асимметричной криптосистеме.

Управлением ключами называется их распределение, аутентификация и регламентация порядка использования. Независимо от вида используемой криптосистемы ключами надо управлять. Безопасные методы управления ключами очень важны, так как многие атаки на криптосистемы имеют объектом атаки процедуры управления ключами.


Процедура

Криптографические методы защиты информации

Криптографическое преобразование - это преобразование информации, основанное на некотором алгоритме, зависящем от изменяемого параметра (обычно называемого секретным ключом), и обладающее свойством невозможности восстановления исходной информации по преобразованной, без знания действующего ключа, с трудоемкостью меньше заранее заданной.

Основным достоинством криптографических методов является то, что они обеспечивают высокую гарантированную стойкость защиты, которую можно рассчитать и выразить в числовой форме (средним числом операций или временем, необходимым для раскрытия зашифрованной информации или вычисления ключей).

К числу основных недостатков криптографических методов следует отнести:

Значительные затраты ресурсов (времени, производительности процессоров) на выполнение криптографических преобразований информации;
. трудности совместного использования зашифрованной (подписанной) информации, связанные с управлением ключами (генерация, распределение и т.д.);
. высокие требования к сохранности секретных ключей и защиты открытых ключей от подмены.

Криптография делится на два класса: криптография с симметричными ключами и криптография с открытыми ключами.

Криптография с симметричными ключами
В криптографии с симметричными ключами (классическая криптография) абоненты используют один и тот же (общий) ключ (секретный элемент) как для шифрования, так и для расшифрования данных.

Следует выделить следующие преимущества криптографии с симметричными ключами:
. относительно высокая производительность алгоритмов;
. высокая криптографическая стойкость алгоритмов на единицу длины ключа.

К недостаткам криптографии с симметричными ключами следует отнести:
. необходимость использования сложного механизма распределения ключей;
. технологические трудности обеспечения неотказуемости.

Криптография с открытыми ключами

Для решения задач распределения ключей и ЭЦП были использованы идеи асимметричности преобразований и открытого распределения ключей Диффи и Хеллмана. В результате была создана криптография с открытыми ключами, в которой используется не один секретный, а пара ключей: открытый (публичный) ключ и секретный (личный, индивидуальный) ключ, известный только одной взаимодействующей стороне. В отличие от секретного ключа, который должен сохраняться в тайне, открытый ключ может распространяться публично. На Рисунке 1 представлены два свойства систем с открытыми ключами, позволяющие формировать зашифрованные и аутентифицированные сообщения.

Два важных свойства криптографии с открытыми ключами




Рисунок 1 Два свойства криптографии с открытыми ключами


Схема шифрования данных с использованием открытого ключа приведена на Рисунке 6 и состоит из двух этапов. На первом из них производится обмен по несекретному каналу открытыми ключами. При этом необходимо обеспечить подлинность передачи ключевой информации. На втором этапе, собственно, реализуется шифрование сообщений, при котором отправитель зашифровывает сообщение открытым ключом получателя.

Зашифрованный файл может быть прочитан только владельцем секретного ключа, т.е. получателем. Схема расшифрования, реализуемая получателем сообщения, использует для этого секретный ключ получателя.

Шифрование




Рисунок 2 Схема шифрования в криптографии с открытыми ключами.


Реализация схемы ЭЦП связанна с вычислением хэш-функции (дайджеста) данных, которая представляет собой уникальное число, полученное из исходных данных путем его сжатия (свертки) с помощью сложного, но известного алгоритма. Хэш-функция является однонаправленной функцией, т.е. по хэш-значению невозможно восстановить исходные данные. Хэш-функция чувствительна к всевозможным искажениям данных. Кроме того, очень трудно отыскать два набора данных, обладающих одним и тем же значением хэш-функции.

Формирование ЭЦП с хэшированием
Схема формирования подписи ЭД его отправителем включает вычисление хэш-функции ЭД и шифрование этого значения посредством секретного ключа отправителя. Результатом шифрования является значение ЭЦП ЭД (реквизит ЭД), которое пересылается вместе с самим ЭД получателю. При этом получателю сообщения должен быть предварительно передан открытый ключ отправителя сообщения.




Рисунок 3 Схема ЭЦП в криптографии с открытыми ключами.


Схема проверки (верификации) ЭЦП, осуществляемая получателем сообщения, состоит из следующих этапов. На первом из них производится расшифрование блока ЭЦП посредством открытого ключа отправителя. Затем вычисляется хэш-функция ЭД. Результат вычисления сравнивается с результатом расшифрования блока ЭЦП. В случае совпадения, принимается решение о соответствии ЭЦП ЭД. Несовпадение результата расшифрования с результатом вычисления хеш-функции ЭД может объясняться следующими причинами:

В процессе передачи по каналу связи была потеряна целостность ЭД;
. при формировании ЭЦП был использован не тот (поддельный) секретный ключ;
. при проверке ЭЦП был использован не тот открытый ключ (в процессе передачи по каналу связи или при дальнейшем его хранении открытый ключ был модифицирован или подменен).

Реализация криптографических алгоритмов с открытыми ключами (по сравнению с симметричными алгоритмами) требует больших затрат процессорного времени. Поэтому криптография с открытыми ключами обычно используется для решения задач распределения ключей и ЭЦП, а симметричная криптография для шифрования. Широко известна схема комбинированного шифрования, сочетающая высокую безопасность криптосистем с открытым ключом с преимуществами высокой скорости работы симметричных криптосистем. В этой схеме для шифрования используется случайно вырабатываемый симметричный (сеансовый) ключ, который, в свою очередь, зашифровывается посредством открытой криптосистемы для его секретной передачи по каналу в начале сеанса связи.

Комбинированный метод




Рисунок 4 Схема комбинированного шифрования.


Доверие к открытому ключу и цифровые сертификаты

Центральным вопросом схемы открытого распределения ключей является вопрос доверия к полученному открытому ключу партнера, который в процессе передачи или хранения может быть модифицирован или подменен.

Для широкого класса практических систем (системы электронного документооборота, системы Клиент-Банк, межбанковские системы электронных расчетов), в которых возможна личная встреча партнеров до начала обмена ЭД, эта задача имеет относительно простое решение - взаимная сертификация открытых ключей.

Эта процедура заключается в том, что каждая сторона при личной встрече удостоверяет подписью уполномоченного лица и печатью бумажный документ - распечатку содержимого открытого ключа другой стороны. Этот бумажный сертификат является, во-первых, обязательством стороны использовать для проверки подписи под входящими сообщениями данный ключ, и, во-вторых, обеспечивает юридическую значимость взаимодействия. Действительно, рассмотренные бумажные сертификаты позволяют однозначно идентифицировать мошенника среди двух партнеров, если один из них захочет подменить ключи.

Таким образом, для реализации юридически значимого электронного взаимодействия двух сторон необходимо заключить договор, предусматривающий обмен сертификатами. Сертификат представляет собой документ, связывающий личностные данные владельца и его открытый ключ. В бумажном виде он должен содержать рукописные подписи уполномоченных лиц и печати.

В системах, где отсутствует возможность предварительного личного контакта партнеров, необходимо использовать цифровые сертификаты, выданные и заверенные ЭЦП доверенного посредника - удостоверяющего или сертификационного центра.

Взаимодействие клиентов с Центром Сертификации
На предварительном этапе каждый из партнеров лично посещает Центр Сертификации (ЦС) и получает личный сертификат - своеобразный электронный аналог гражданского паспорта.




Рисунок 5 Сертификат х.509.


После посещения ЦС каждый из партнеров становится обладателем открытого ключа ЦС. Открытый ключ ЦС позволяет его обладателю проверить подлинность открытого ключа партнера путем проверки подлинности ЭЦП удостоверяющего центра под сертификатом открытого ключа партнера.

В соответствии с законом "Об ЭЦП" цифровой сертификат содержит следующие сведения:

Наименование и реквизиты центра сертификации ключей (центрального удостоверяющего органа, удостоверяющего центра);
. Свидетельство, что сертификат выдан в Украине;
. Уникальный регистрационный номер сертификата ключа;
. Основные данные (реквизиты) подписчика - собственника приватного (открытого) ключа;
. Дата и время начала и окончания срока действия сертификата;
. Открытый ключ;
. Наименование криптографического алгоритма, используемого владельцем открытого ключа;
. Информацию об ограничении использования подписи;
. Усиленный сертификат ключа, кроме обязательных данных, которые содержатся в сертификате ключа, должен иметь признак усиленного сертификата;
. Другие данные могут вноситься в усиленный сертификат ключа по требованию его владельца.

Этот цифровой сертификат подписан на секретном ключе ЦС, поэтому любой обладатель открытого ключа ЦС может проверить его подлинность. Таким образом, использование цифрового сертификата предполагает следующую схему электронного взаимодействия партнеров. Один из партнеров посылает другому собственный сертификат, полученный из ЦС, и сообщение, подписанное ЭЦП. Получатель сообщения осуществляет проверку подлинности сертификата партнера, которая включает:

Проверку доверия эмитенту сертификата и срока его действия;
. проверку ЭЦП эмитента под сертификатом;
. проверку аннулирования сертификата.


В случае если сертификат партнера не утратил свою силу, а ЭЦП используется в отношениях, в которых она имеет юридическое значение, открытый ключ партнера извлекается из сертификата. На основании этого открытого ключа может быть проверена ЭЦП партнера под электронным документом (ЭД).
Важно отметить, что в соответствии с законом "Об ЭЦП" подтверждением подлинности ЭЦП в ЭД является положительный результат проверки соответствующим сертифицированным средством ЭЦП с использованием сертификата ключа подписи.

ЦС, обеспечивая безопасность взаимодействия партнеров, выполняет следующие функции:

Регистрирует ключи ЭЦП;
. создает, по обращению пользователей, закрытые и открытые ключи ЭЦП;
. приостанавливает и возобновляет действие сертификатов ключей подписей, а также аннулирует их;
. ведет реестр сертификатов ключей подписей, обеспечивает актуальность реестра и возможность свободного доступа пользователей к реестру;
. выдает сертификаты ключей подписей на бумажных носителях и в виде электронных документов с информацией об их действительности;
. проводит, по обращениям пользователей, подтверждение подлинности (действительности) подписи в ЭД в отношении зарегистрированных им ЭЦП.


В ЦС создаются условия безопасного хранения секретных ключей на дорогом и хорошо защищенном оборудовании, а также условия администрирования доступа к секретным ключам.

Регистрация каждой ЭЦП осуществляется на основе заявления, содержащего сведения, необходимые для выдачи сертификата, а также сведения, необходимые для идентификации ЭЦП обладателя и передачи ему сообщений. Заявление подписывается собственноручной подписью обладателя ЭЦП, содержащиеся в нем сведения подтверждаются предъявлением соответствующих документов. При регистрации проверяется уникальность открытых ключей ЭЦП в реестре и архиве ЦС.

При регистрации в ЦС на бумажных носителях оформляются два экземпляра сертификата ключа подписи, которые заверяются собственноручными подписями обладателя ЭЦП и уполномоченного лица удостоверяющего центра (УЦ) и печатью удостоверяющего центра. Один экземпляр выдается обладателю ЭЦП, второй остается в УЦ.

В реальных системах каждым партнером может использоваться несколько сертификатов, выданных различными ЦС. Различные ЦС могут быть объединены инфраструктурой открытых ключей или PKI (PKI - Public Key Infrastructure). ЦС в рамках PKI обеспечивает не только хранение сертификатов, но и управление ими (выпуск, отзыв, проверку доверия). Наиболее распространенная модель PKI - иерархическая. Фундаментальное преимущество этой модели состоит в том, что проверка сертификатов требует доверия только относительно малому числу корневых ЦС. В то же время эта модель позволяет иметь различное число ЦС, выдающих сертификаты.






Защита информации путем преобразования, исключающего ее прочтение посторонним лицом, является одним из наиболее действенных методов обеспечения информационной безопасности, и имеет давнюю историю. Проблемой преобразования информации занимается наука криптология. Исходя из направленности практического применения, криптология разделяется на два противоположных направления: криптографию и криптоанализ.

Криптография – наука о методах защиты информации на основе ее преобразования с сохранением достоверности содержания.

Криптоанализ – наука о методах раскрытия и модификации данных без знания ключей.

Это научное направление преследует две цели. Первая – исследование закодированной информации с целью восстановления содержания исходного документа. Вторая – распознавание и изучение метода кодирования информации с целью фальсификации сообщения.

Современная криптография включает в себя четыре крупных раздела:

1. Симметричные криптосистемы.

2. Криптосистемы с открытым ключом.

3. Системы электронной подписи.

4. Управление ключами.

Основные направления использования криптографических методов:

* передача конфиденциальной информации по каналам связи;

* установление подлинности передаваемых сообщений;

* хранение информации в зашифрованном виде.

Перечислим основные понятия и определения криптографии.

Шифрование – процесс, при котором исходный (открытый) текст сообщения заменяется шифрованным текстом.

Дешифрование – процесс преобразования шифрованного текста в открытый с помощью ключа шифрования.

Ключ шифрования – информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

Текст – упорядоченный набор из элементов (символов) алфавита.

Алфавит – конечное множество используемых для кодирования информации знаков.

В качестве примеров алфавитов, используемых в современных информационных системах, можно привести следующие:

* алфавит Z33 – 32 буквы русского языка и пробел;

* алфавит Z256 – стандартные символы компьютерной кодировки знаков латинского и национального алфавитов, цифры, знаки препинания и специальные символы;

* бинарный алфавит Z2 – цифры 0 и 1, восьмеричный, шестнадцатеричный и т.п. алфавиты.

Процесс криптографического преобразования информации может осуществляться аппаратным или программным способами. Аппаратная реализация характеризуется существенно большей стоимостью, высокой защищенностью и скоростью работы, простотой в использовании. Программный способ более практичен, допускает известную гибкость в использовании, но сравнительно медленнее и хуже защищен.

Все современные алгоритмы криптографического преобразования информации используют ключ для управления шифрованием и дешифрованием. Алгоритмы с использованием ключа делятся на два класса:



* Симметричные (с секретным ключом). Для шифрования и дешифрования используется один и тот же ключ, или же ключ для дешифрования вычисляется на основе ключа шифрования.

* Асимметричные (с открытым ключом). Шифрование информации осуществляется с использованием открытого ключа, который известен всем. Дешифрование производится с помощью закрытого ключа, известного только получателю сообщения.

Симметричные алгоритмы работают быстрее, чем асимметри чные. На практике оба типа алгоритмов часто используются совместно.

Электронная цифровая подпись – присоединяемое к тексту его криптографическое преобразование с использованием закрытого ключа.

Электронная цифровая подпись позволяет идентифицировать владельца подписи, а также установить отсутствие искажения информации в электронном документе.

Процесс использования электронной цифровой подписи в общем виде выглядит следующим образом:

1. Отправитель рассчитывает хэш-функцию текста – идентификатор, полученный путем сжатия информации с помощью математического алгоритма.

2. Отправитель, используя свой секретный ключ, зашифровывает хэш-функцию. В результате получается определенная цифровая последовательность – цифровая подпись.

3. Отправитель формирует пересылаемое сообщение, включающее в себя исходный текст и его цифровую подпись

4. Отправитель по открытому каналу связи передает пересылаемое сообщение.

5. Получатель выделяет из принятого сообщения текст и его цифровую подпись.

6. Получатель вычисляет хэш-функцию полученного текста.

7. Получатель сообщения с помощью открытого ключа расшифровывает цифровую подпись.

8. Получатель сравнивает результат расшифровки с рассчитанной им хэш-функцией. Если вычисленная и расшифрованная хэш-функции совпадают, то сообщение считается подтвержденным.

Важной проблемой всей криптографии с открытым ключом, в том числе и систем ЭЦП, является управление ключами. Необходимо обеспечить доступ любого пользователя к подлинному открытому ключу любого другого пользователя, защитить эти ключи от подмены злоумышленником, а также организовать отзыв ключа в случае его компрометации. Управлением ключами занимаются удостоверяющие центры.

Программно-аппаратные средства защиты с электронными ключами в последнее время приобретают все большую популярность. Под программно-аппаратными средствами защиты в данном случае понимаются средства, основанные на использовании так называемых «аппаратных (электронных) ключей». Электронный ключ - это аппаратная часть системы защиты, представляющая собой плату с микросхемами памяти и, в некоторых случаях, микропроцессором, помещенную в корпус и предназначенную для установки в один из стандартных портов ПК (СОММ, LPT, PCMCIA, USB...) или слот расширения материнской платы. Также в качестве такого устройства могут использоваться СМАРТ-карты. По результатам проведенного анализа, программно-аппаратные средства защиты в настоящий момент являются одними из самых стойких систем защиты от НСД.

Электронные ключи по архитектуре можно подразделить на ключи с памятью (без микропроцессора) и ключи с микропроцессором (и памятью).

Наименее стойкими (в зависимости от типа программной части) являются системы с аппаратной частью первого типа. В таких системах критическая информация (ключ дешифрации, таблица переходов) хранится в памяти электронного ключа. Для дезактивации таких защит в большинстве случаев необходимо наличие у злоумышленника аппаратной части системы защиты (основная методика: перехват диалога между программной и аппаратной частями для доступа к критической информации).

Самыми стойкими являются системы с аппаратной частью второго типа. Такие комплексы содержат в аппаратной части не только ключ дешифрации, но и блоки шифрации/дешифрации данных, таким образом, при работе защиты в электронный ключ передаются блоки зашифрованной информации, а принимаются оттуда расшифрованные данные. В системах этого типа достаточно сложно перехватить ключ дешифрации, так как все процедуры выполняются аппаратной частью, но остается возможность принудительного сохранения защищенной программы в открытом виде после отработки системы защиты. Кроме того, к ним применимы методы криптоанализа.

Информация о пользователе, полученная системой защиты на этапе идентификации/аутентификации, используется ею в дальнейшем для наделения пользователя правами доступа в рамках модели безопасности, организованной в данной информационной системе.

Наряду с обычным шифрованием, используется и такой способ сокрытия данных, как стеганография.

Стеганография – совокупность методов, обеспечивающих сокрытие факта существования информации в той или иной среде, а также средства реализации таких методов.

К стеганографии можно отнести огромное множество секретных средств связи, таких как невидимые чернила, микрофотоснимки, условное расположение знаков и т.д.

В настоящее время активно развивается компьютерная стеганография. Она рассматривает вопросы, связанные с сокрытием информации, хранящейся на цифровых носителях или передаваемой по телекоммуникационным каналам связи.

Для стеганографического преобразования необходимы:

* скрываемая информация;

* контейнер данных;

* программное обеспечение для добавления информации в файл-контейнер и ее извлечения.

В качестве контейнера для скрываемого сообщения могут выступать графические, аудио- или видеофайлы.

Основная идея стеганографического сокрытия информации заключается в том, что добавление «секретного» сообщения в файл-контейнер должно вызывать лишь незначительные изменения последнего, не улавливаемые органами чувств человека. Поэтому файл-контейнер должен быть достаточно большого размера. Стеганографические технологии используются для решения следующих задач:

* защита информации от несанкционированного доступа;

* противодействие системам мониторинга передаваемых данных;

* создание скрытых каналов утечки информации.

Стеганография позволяет внедрить в компьютерные графические изображения, аудио- и видеопродукцию, литературные тексты, программы специальную цифровую метку, незаметную при обычном использовании файла, но распознаваемую специальным программным обеспечением. Такие специальные сведения могут рассматриваться в качестве подтверждения авторства

С точки зрения информационной безопасности криптографические ключи являются критически важными данными. Если раньше, чтобы обокрасть компанию, злоумышленникам приходилось проникать на ее территорию, вскрывать помещения и сейфы, то теперь достаточно похитить токен с криптографическим ключом и сделать перевод через систему Интернет Клиент-Банк. Фундаментом обеспечения безопасности с помощью систем криптографической защиты информации (СКЗИ) является поддержание конфиденциальности криптографических ключей.

А как обеспечить конфиденциальность того, о существования чего вы не догадываетесь? Чтобы убрать токен с ключом в сейф, надо знать о существовании токена и сейфа. Как это не парадоксально звучит, очень мало компаний обладают представлением о точном количестве ключевых документов, которыми они пользуются. Это может происходить по целому ряду причин, например, недооценка угроз информационной безопасности, отсутствие налаженных бизнес-процессов, недостаточная квалификация персонала в вопросах безопасности и т.д. Вспоминают про данную задачу обычно уже после инцидентов, таких как например этот .

В данной статье будет описан первый шаг на пути совершенствования защиты информации с помощью криптосредств, а если точнее, то рассмотрим один из подходов к проведению аудита СКЗИ и криптоключей. Повествование будет вестись от лица специалиста по информационной безопасности, при этом будем считать, что работы проводятся с нуля.

Термины и определения


В начале статьи, дабы не пугать неподготовленного читателя сложными определениями, мы широко использовали термины криптографический ключ или криптоключ, теперь настало время усовершенствовать наш понятийный аппарат и привести его в соответствие действующему законодательству. Это очень важный шаг, поскольку он позволит эффективно структурировать информацию, полученную по результатам аудита.

  1. Криптографический ключ (криптоключ) - совокупность данных, обеспечивающая выбор одного конкретного криптографического преобразования из числа всех возможных в данной криптографической системе (определение из «розовой инструкции – Приказа ФАПСИ № 152 от от 13 июня 2001 г. , далее по тексту – ФАПСИ 152).
  2. Ключевая информация - специальным образом организованная совокупность криптоключей, предназначенная для осуществления криптографической защиты информации в течение определенного срока [ФАПСИ 152].
    Понять принципиальное отличие между криптоключем и ключевой информации можно на следующем примере. При организации HTTPS, генерируются ключевая пара открытый и закрытый ключ, а из открытого ключа и дополнительной информации получается сертификат. Так вот, в данной схеме совокупность сертификата и закрытого ключа образуют ключевую информацию, а каждый из них по отдельности является криптоключом. Тут можно руководствоваться следующим простым правиломконечные пользователи при работе с СКЗИ используют ключевую информацию, а криптоключи обычно используют СКЗИ внутри себя. В тоже время важно понимать, что ключевая информация может состоять из одного криптоключа.
  3. Ключевые документы - электронные документы на любых носителях информации, а также документы на бумажных носителях, содержащие ключевую информацию ограниченного доступа для криптографического преобразования информации с использованием алгоритмов криптографического преобразования информации (криптографический ключ) в шифровальных (криптографических) средствах. (определение из Постановления Правительства № 313 от от 16 апреля 2012 г. , далее по тексту – ПП-313)
    Простым языком, ключевой документ - это ключевая информация, записанная на носителе. При анализе ключевой информации и ключевых документов следует выделить, что эксплуатируется (то есть используется для криптографических преобразований – шифрование, электронная подпись и т.д.) ключевая информация, а передаются работникам ключевые документы ее содержащие.
  4. Средства криптографической защиты информации (СКЗИ) – средства шифрования, средства имитозащиты, средства электронной подписи, средства кодирования, средства изготовления ключевых документов, ключевые документы, аппаратные шифровальные (криптографические) средства, программно-аппаратные шифровальные (криптографические) средства. [ПП-313]
    При анализе данного определения можно обнаружить в нем наличие термина ключевые документы. Термин дан в Постановлении Правительства и менять его мы не имеем права. В тоже время дальнейшее описание будет вестись из расчета что к СКЗИ будут относится только средства осуществления криптографических преобразований). Данный подход позволит упростить проведение аудита, но в тоже время не будет сказываться на его качестве, поскольку ключевые документы мы все равно все учтем, но в своем разделе и своими методами.

Методика аудита и ожидаемые результаты


Основными особенностями предлагаемой в данной статье методике аудита являются постулаты о том, что:

  • ни один работник компании не может точно ответить на вопросы, задаваемые в ходе аудита;
  • существующие источники данных (перечни, реестры и др.) не точны или слабо структурированы.
Поэтому предлагаемая в статье методика, это своеобразный data minning, в ходе которого будут один и те же данные извлекаться из разных источников, а затем сравниваться, структурироваться и уточняться.

Приведем основные зависимости, которые нам в этом помогут:

  1. Если есть СКЗИ, то есть и ключевая информация.
  2. Если есть электронный документооборот (в том числе с контрагентами и регуляторами), то скорее всего в нем применяется электронная подпись и как следствие СКЗИ и ключевая информация.
  3. Электронный документооборот в данном контексте следует понимать широко, то есть к нему будут относится, как непосредственный обмен юридически значимыми электронными документами, так и сдача отчетности, и работа в платежных или торговых системах и так далее. Перечень и формы электронного документооборота определяются бизнес-процессами компании, а также действующим законодательством.
  4. Если работник задействован в электронном документообороте, то скорее всего у него есть ключевые документы.
  5. При организации электронного документооборота с контрагентами обычно выпускаются организационно-распорядительные документы (приказы) о назначении ответственных лиц.
  6. Если информация передается через сеть Интернет (или другие общественные сети), то скорее всего она шифруется. В первую очередь это касается VPN и различных систем удаленного доступа.
  7. Если в сетевом трафике обнаружены протоколы, передающие трафик в зашифрованном виде, то применяются СКЗИ и ключевая информация.
  8. Если производились расчеты с контрагентами, занимающимися: поставками средств защиты информации, телекоммуникационных устройств, оказанием услуг по передаче отёчности, услуг удостоверяющих центров, то при данном взаимодействии могли приобретаться СКЗИ или ключевые документы.
  9. Ключевые документы могут быть как на отчуждаемых носителях (дискетах, флешках, токенах, …), так и записаны внутрь компьютеров и аппаратных СКЗИ.
  10. При использовании средств виртуализации, ключевые документы могут храниться как внутри виртуальных машин, так и монтироваться к виртуальным машинам с помощью гипервизора.
  11. Аппаратные СКЗИ могут устанавливаться в серверных и быть недоступны для анализа по сети.
  12. Некоторые системы электронного документооборота могут находится в неактивном или малоактивном виде, но в тоже время содержать активную ключевую информацию и СКЗИ.
  13. Внутренняя нормативная и организационно-распорядительная документация может содержать сведения о системах электронного документооборота, СКЗИ и ключевых документов.
Для добычи первичной информации будем:
  • опрашивать работников;
  • проводить анализ документации компании, включая внутренние нормативные и распорядительные документы, а также исходящие платежные поручения;
  • проводить визуальный анализ серверных комнат и коммуникационных шкафов;
  • проводить технических анализ содержимого автоматизированных рабочих мест (АРМ), серверов и средств виртуализации.
Конкретные мероприятия сформулируем позже, а пока рассмотрим конечные данные, которые мы должны получить по итогам аудита:

Перечень СКЗИ:

  1. Модель СКЗИ . Например, СКЗИ Крипто CSP 3.9, или OpenSSL 1.0.1
  2. Идентификатор экземпляра СКЗИ . Например, серийный, лицензионный (или регистрационный по ПКЗ-2005) номер СКЗИ
  3. Сведения о сертификате ФСБ России на СКЗИ , включая номер и даты начала и окончания сроков действия.
  4. Сведения о месте эксплуатации СКЗИ . Например, имя компьютера на которое установлено программное СКЗИ, или наименование технических средств или помещения где установлены аппаратные СКЗИ.
Данная информация позволит:
  1. Управлять уязвимостями в СКЗИ, то есть быстро их обнаруживать и исправлять.
  2. Отслеживать сроки действия сертификатов на СКЗИ, а также проверять используется ли сертифицированное СКЗИ в соответствии с правилами, установленными документацией или нет.
  3. Планировать затраты на СКЗИ, зная сколько уже находится в эксплуатации и сколько еще есть сводных средств.
  4. Формировать регламентную отчетность.
Перечень ключевой информации:

По каждому элементу перечня фиксируем следующие данные:

  1. Наименование или идентификатор ключевой информации . Например, «Ключ квалифицированной ЭП. Серийный номер сертификата 31:2D:AF», при этом идентификатор следует подбирать таким образом, чтобы по нему можно было найти ключ. Например, удостоверяющие центры, когда посылают уведомления обычно идентифицируют ключи по номерам сертификатов.
  2. Центр управления ключевой системой (ЦУКС) , выпустивший данную ключевую информацию. Это может быть организация выпустившая ключ, например, удостоверяющий центр.
  3. Физическое лицо , на имя которого выпущена ключевая информация. Эту информацию можно извлечь из полей CN сертификатов X.509
  4. Формат ключевой информации . Например, СКЗИ КриптоПРО, СКЗИ Верба-OW, X.509 и т.д (или другими словами для использования с какими СКЗИ предназначена данная ключевая информация).
  5. Назначение ключевой информации . Например, «Участие в торгах на площадке Сбербанк АСТ», «Квалифицированная электронная подпись для сдачи отчетности» и т.д. С точки зрения техники, в данном поле можно фиксировать органичения зафиксированные полях extended key usage и др сертификатов X.509.
  6. Начало и окончание сроков действия ключевой информации .
  7. Порядок перевыпуска ключевой информации . То есть знания о том, что нужно делать и как, при перевыпуске ключевой информации. По крайней мере желательно фиксировать контакты должностных лиц ЦУКС, выпустившего ключевую информацию.
  8. Перечень информационных систем, сервисов или бизнес-процессов в рамках которых используется ключевая информация . Например, «Система дистанционного банковского обслуживания Интернет Клиент-Банк».
Данная информация позволит:
  1. Отслеживать сроки действия ключевой информации.
  2. В случае необходимости быстро перевыпускать ключевую информацию. Это может понадобится как при плановом, так при внеплановом перевыпуске.
  3. Блокировать использование ключевой информации, при увольнении работника на которого она выпущена.
  4. Расследовать инциденты информационной безопасности, отвечая на вопросы: «У кого были ключи для совершения платежей?» и др.
Перечень ключевых документов:

По каждому элементу перечня фиксируем следующие данные:

  1. Ключевая информация , содержащаяся в ключевом документе.
  2. Носитель ключевой информации , на который записана ключевая информация.
  3. Лицо , ответственное за сохранность ключевого документа и конфиденциальность содержащейся в нем ключевой информации.
Данная информация позволит:
  1. Перевыпускать ключевую информацию в случаях: увольнения работников, обладающих ключевыми документами, а также при компрометации носителей.
  2. Обеспечивать конфиденциальность ключевой информации, путем инвентаризации носителей ее содержащих.

План аудита


Настало время рассмотреть практически особенности проведения аудита. Сделаем это на примере кредитно-финансовой организации или другими словами на примере банка. Данный пример выбран не случайно. Банки используют довольно большое число разношерстных систем криптографической защиты, которые задействованы в гигантском количестве бизнес-процессов, да и к тому же практически все банки являются Лицензиатами ФСБ России по криптографии. Далее в статье будет представлен план аудита СКЗИ и криптоключей, применительно к Банку. В тоже время данный план может быть взят за основу при проведении аудита практически любой компании. Для удобство восприятия план разбит на этапы, которые в свою очередь свернуты в сполйеры.

Этап 1. Сбор данных с инфраструктурных подразделений компании

Действие
Источник – все работники компании
1 Делаем рассылку по корпоративной почте всем работниками компании с просьбой сообщить в службу информационной безопасности обо всех используемых ими криптографических ключах Получаем электронные письма, на базе которых формируем перечень ключевой информации и перечень ключевых документов
Источник – Руководитель Службы информационных технологий
1 Запрашиваем перечень ключевой информации и ключевых документов С некоторой вероятностью Служба ИТ ведет подобные документы, будем использовать их для формирования и уточнения перечней ключевой информации, ключевых документов и СКЗИ
2 Запрашиваем перечень СКЗИ
3 Запрашиваем реестр ПО, установленного на серверах и рабочих станциях В данном реестре ищем программные СКЗИ и их компоненты. Например, КриптоПРО CSP, Верба-OW, Signal-COM CSP, Сигнатура, PGP, ruToken, eToken, КритоАРМ и др. На базе этих данных формируем перечень СКЗИ.
4 Запрашиваем перечень работников (вероятно техническая поддержка), помогающих пользователям по использованию СКЗИ и перевыпуску ключевой информации. Запрашиваем у данных лиц аналогичную информацию, что и у системных администраторов
Источник – системные администраторы Службы информационных технологий
1 Запрашиваем перечень отечественных криптошлюзов (VIPNET, Континент, S-terra и др.) В случаях, когда в компании не реализованы регулярные бизнес процессы управления ИТ и ИБ, подобные вопросы могут помочь вспомнить системным администраторам о существовании того или иного устройства или ПО. Используем данную информацию для получения перечня СКЗИ.
2 Запрашиваем перечень отечественных программных СКЗИ (СКЗИ МагПро КриптоПакет, VIPNET CSP, CryptonDisk, SecretDisk, …)
3 Запрашиваем перечень маршрутизаторов, реализующих VPN для:
а) связи офисов компании;
б) взаимодействия с контрагентами и партнерами.
4 Запрашиваем перечень информационных сервисов, опубликованных в Интернет (доступных из Интернет). Они могу включать:
а) корпоративную электронную почту;
б) системы обмена мгновенными сообщениями;
в) корпоративные web-сайты;
г) сервисы для обмена информации с партнерами и контрагентами (extranet);
д) системы дистанционного банковского обслуживания (если компания – Банк);
е) системы удаленного доступа в сеть компании.
Для проверки полноты предоставленных сведений сверяем их с перечнем правил Portforwarding пограничных межсетевых экранов.
Анализируя полученную информацию с высокой вероятностью можно встретить использование СКЗИ и криптоключей. Используем полученные данные для формирования перечня СКЗИ и ключевой информации.
5 Запрашиваем перечень информационных систем, используемых для сдачи отчетности (Такском, Контур и т. д.) В данных системах используются ключи квалифицированной электронной подписи и СКЗИ. Через данный перечень формируем перечень СКЗИ, перечень ключевой информации, а также узнаем работников, пользующихся этими системами для формирования перечня ключевых документов.
6 Запрашиваем перечень систем внутреннего электронного документооборота (Lotus, DIRECTUM, 1С: Документооборот и др.), а также перечень их пользователей. В рамках внутренних систем электронного документооборота могут встретиться ключи электронной подписи. На основании полученной информации формируем перечень ключевой информации и перечень ключевых документов.
7 Запрашиваем перечень внутренних удостоверяющих центров. Средства, используемые для организации удостоверяющих центров, фиксируем в перечне СКЗИ. В дальнейшем будем анализировать содержимое баз данных удостоверяющих центров для выявления ключевой информации.
8 Запрашиваем информацию об использовании технологий: IEEE 802.1x, WiFiWPA2 Enterprise и систем IP-видеонаблюдения В случае использования данных технологий мы можем обнаружить в задействованных устройствах ключевые документы.
Источник – Руководитель кадровой службы
1 Просим описать процесс приема и увольнение работников. Фокусируемся на вопросе о том, кто забирает у увольняющихся работников ключевые документы Анализируем документы (обходные листы) на предмет наличия в них информационных систем в которых могут использоваться СКЗИ.

Этап 2. Сбор данных с бизнес-подразделений компании (на примере Банка)

Действие Ожидаемый результат и его использование
Источник – Руководитель служба расчетов (корреспондентских отношений)
1 Просим предоставить схему организации взаимодействия с платежной системой Банка России. В частности, это будет актуально для Банков, имеющих развитую филиальную сеть, при которой филиалы могут подключать в платежную систему ЦБ напрямую На базе полученных данных определяем местоположение платежных шлюзов (АРМ КБР, УТА) и перечень задействованных пользователей. Полученную информацию используем для формирования перечня СКЗИ, ключевой информации и ключевых документов.
2 Запрашиваем перечень Банков, с которыми установлены прямые корреспондентские отношения, а также просим рассказать кто занимается осуществлением переводов и какие технические средства используются.
3 Запрашиваем перечень платежных систем, в которых участвует Банк (SWIFT, VISA, MasterCard, НСПК, и т.д), а также месторасположение терминалов для связи Аналогично, как для платежной системы Банка России
Источник – Руководитель подразделения, отвечающего за предоставление дистанционных банковских услуг
1 Запрашиваем перечень систем дистанционного банковского обслуживания. В указанных системах анализируем использование СКЗИ и ключевой информации. На основании полученных данных формируем перечень СКЗИ и ключевой информации и ключевых документов.
Источник – Руководитель подразделения, отвечающего за функционирование процессинга платежных карт
1 Запрашиваем реестр HSM На базе полученной информации формируем перечень СКЗИ, ключевой информации и ключевых документов.
2 Запрашиваем реестр офицеров безопасности
4 Запрашиваем информацию о компонентах LMK HSM
5 Запрашиваем информацию об организации систем типа 3D-Secure и организации персонализации платежных карт
Источник – Руководители подразделений, выполняющих функции казначейства и депозитария
1 Перечень банков, с которыми установлены корреспондентские отношения и которые участвую в межбанковском кредитовании. Используем полученную информацию для уточнения ранее полученных данных от службы расчетов, а также фиксируем информацию о взаимодействии с биржами и депозитариями. На базе полученной информации формируем перечень СКЗИ и ключевой информации.
2 Перечень бирж и специализированных депозитариев с которыми работает Банк
Источник – Руководители служб финансового мониторинга и подразделений ответственных за сдачу отчетности в Банк России
1 Запрашиваем информацию о том, как они отправляют сведения и получают сведения из ЦБ. Перечень задействованных лиц и технических средств. Информационное взаимодействие с Банком России жестко регламентировано соответствующими документами, например, 2332-У, 321-И и многими другими, проверяем соответствие этим документам и формируем перечни СКЗИ, ключевой информации и ключевых документов.
Источник – Главный бухгалтер и работники бухгалтерии, занимающиеся оплатой счетов по внутрибанковским нуждам
1 Запрашиваем информацию, о том, как происходит подготовка и сдача отчетности в налоговые инспекции и Банк России Уточняем ранее полученные сведения
2 Запрашиваем реестр платежных документов, для оплаты внутрибанковских нужд В данном реестре будем искать документы где:
1) в качестве адресатов платежей указаны удостоверяющие центры, специализированные операторы связи, производители СКЗИ, поставщики телекоммуникационного оборудования. Наименования данных компаний можно получить из Реестра сертифицированных СКЗИ ФСБ России, перечня аккредитованных удостоверяющих центров Минкомсвязи и других источников.
2) в качестве расшифровки платежа присутствуют слова: «СКЗИ», «подпись», «токен», «ключевой», «БКИ» и т. д.
Источник – Руководители служб по работе с просроченной задолженностью и управления рисков
1 Запрашиваем перечень бюро кредитных историй и коллекторских агентств, с которыми работает Банк. Совместно со службой ИТ анализируем полученные данные с целью выяснения организации электронного документооборота, на базе чего уточняем перечни СКЗИ, ключевой информации и ключевых документов.
Источник – Руководители служб документооборота, внутреннего контроля и внутреннего аудита
1 Запрашиваем реестр внутренних организационно распорядительных документов (приказов). В данных документах ищем документы, относящиеся к СКЗИ. Для этого анализируем наличие ключевых слов «безопасность», «ответственное лицо», «администратор», «электронная подпись», «ЭП», «ЭЦП», «ЭДО», «АСП», «СКЗИ» и их производных. После чего выявляем перечень работников Банка зафиксированных в этих документах. Проводим с работниками интервью на тему использования ими криптосредств. Полученную информацию отражаем в перечнях СКЗИ, ключевой информации и ключевых документов.
2 Запрашиваем перечни договоров с контрагентами Стараемся выявить договора об электронном документообороте, а также договора с компаниями, занимающимися поставной средств защиты информации или оказывающими услуги в этой области, а также компаниями, предоставляющими услуги удостоверяющих центров и услуги сдачи отчетности через Интернет.
3 Анализируем технологию хранения документов дня в электронном виде При реализации хранения документов дня в электронном виде обязательно применяются СКЗИ

Этап 3. Технический аудит

Действие Ожидаемый результат и его использование
1 Проводим техническую инвентаризацию ПО установленного на компьютерах. Для этого используем:
· аналитические возможности корпоративных систем антивирусной защиты (например, Антивирус Касперского умеет строить подобный реестр).
· скрипты WMI для опроса компьютеров под управлением ОС Windows;
· возможности пакетных менеджеров для опроса *nix систем;
· специализированное ПО для инвентаризации.
Среди установленного ПО ищем программные СКЗИ, драйвера для аппаратных СКЗИ и ключевых носителей. На базе полученной информации обновляем перечень СКЗИ.
2 Осуществляем поиск ключевых документов на серверах и рабочих станциях. Для этого
· Logon-скриптами опрашиваем АРМ в домене на предмет наличия сертификатов с закрытыми ключами в профилях пользователей и профилях компьютера.
· На всех компьютерах, файловых серверах, гипервизорах ищем файлы с расширениями: crt, cer, key, pfx, p12, pem, pse, jks и др.
· На гипервизорах систем виртуализации ищем примонтированные дисководы и образы дискет.
Очень часто ключевые документы представлены в виде файловых ключевых контейнеров, а также контейнерами, хранящимися в реестрах компьютеров, работающих под управлением ОС Windows. Найденные ключевые документы фиксируем в перечне ключевых документов, а содержащеюся в них ключевую информацию в перечне ключевой информации.
3 Анализируем содержание баз данных удостоверяющих центров Базы данных удостоверяющих центров обычно содержат в себе данные о выпущенных этим центрами сертификатов. Полученную информацию заносим в перечень ключевой информации и перечень ключевых документов.
4 Проводим визуальный осмотр серверных комнат и коммутационных шкафов, ищем СКЗИ и аппаратные ключевые носители (токены, дисководы) В некоторых случаях, невозможно провести инвентаризацию СКЗИ и ключевых документов по сети. Системы могут находится в изолированных сетевых сегментах, либо вообще не иметь сетевых подключений. Для этого проводим визуальный осмотр, в результатах которого должно быть установлены названия и назначение всего оборудования, представленного в серверных. Полученную информацию заносим в перечень СКЗИ и ключевых документов.
5 Проводим анализ сетевого трафика, с целью выявления информационных потоков, использующих шифрованный обмен Шифрованные протоколы – HTTPS, SSH и др. позволят нам идентифицировать сетевые узлы на которых выполняются криптографические преобразования, и как следствие содержащие СКЗИ и ключевые документы.

Заключение

В данной статье мы рассмотрели теорию и практику проведения аудита СКЗИ и криптоключей. Как вы убедились, процедура эта довольно сложная и трудоемкая, но если к ней грамотно подходить вполне осуществимая. Будем надеется данная статья вам поможет в реальной жизни. Спасибо за внимание, ждем ваших комментариев

Теги:

  • скзи
  • криптография
  • электронная подпись
  • аудит
  • менеджмент
Добавить метки

Лучшие статьи по теме