Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Вконтакте
  • Когда и как появились дискеты и диски. Значение слова дискета Что значит дискета

Когда и как появились дискеты и диски. Значение слова дискета Что значит дискета

Эволюция современного флоппи-диска

Большинство технологий, применяемых в персональных компьютерах, разработано или после появления ПК, или специально для них. Одним из немногих исключений является флоппи-диск, он же гибкий диск, он же дискета. Во многом благодаря гибкому диску стало возможным появление персональных компьютеров, но именно благодаря персональным компьютерам дискета получила столь широкое распространение. Все сказанное ниже о емкостях и форматах относится к IBM-совместимым персональным компьютерам, если не оговорено иное. Это объясняется значительно более широким их распространением, особенно в России. Поэтому ниже вы не встретите описаний экзотических форматов разметки дискет - да не обидятся на меня поклонники платформ Macintosh или Amiga.

Первый образец флоппи-диска был разработан IBM в 1967 году. Тридцать два года - для компьютерной технологии возраст очень почтенный, но, судя по всему, «жива еще моя старушка». Попробуем проследить ее жизнь в развитии.

Время рождения нашей героини относится к начальному периоду развития мини- и микрокомпьютеров. Для них требовался носитель информации, отличный от применявшихся тогда громоздких накопителей на магнитных и перфолентах, жестких дисках и перфокартах (картонных карточках с рядами цифр и сложным узором пробитых машиной отверстий - что-то типа латунных дисков для механического пианино. - Прим. ред. ). Период младенчества и детства, то есть отработки технологий, занял четыре года, так что первые коммерческие накопители были предложены IBM в 1971 году - в том же году, когда Intel представила процессор 4004. Можно сказать, что два события случайно совпали по времени, так как предварительного намерения использовать флоппи-дисковод именно на будущем «Intel-совместимом» персональном компьютере не было. Но эта случайность лишний раз демонстрирует параллельное развитие различных технологий, приведшее к появлению первых персональных компьютеров.

Развитие нашей героини дискеты в чем-то соответствует этапам взросления homo sapiens, а в чем-то ему совершенно противоположно. Человек с возрастом набирается ума, его возможности увеличиваются; это же можно сказать о флоппи-дисках, емкость которых возрастает по мере совершенствования технологии. Зато «рост» дискет имеет совершенно противоположную тенденцию - с возрастом он уменьшается.

Наша героиня родилась размером (точнее, диаметром) 8 дюймов (203,2 мм), что для человека маловато, но для носителя емкостью немногим более 100 Кбайт по тем временам было в самый раз. Нареченная при рождении гибким диском (Flexible Disk), она быстро получила несколько жаргонных названий. Например, «псевдоним» флоппи-диск произошел от английского слова flop («хлопать крыльями»). Действительно, звук, производимый при помахивании конвертом 20x20 см похож на шум, производимый взлетающей птицей соответствующих размеров. Дискетой (diskette) подобный носитель стали называть несколько позже, после первого уменьшения размеров. Это, пожалуй, рекорд по количеству названий для одной и той же технологии.

Первоначально дискета состояла из двух частей: носителя и конверта. Носитель представлял собой круглую пластину с центральным усиленным по краям отверстием и одним или несколькими индексными отверстиями, высеченными из широкой и толстой двухсторонней магнитной ленты. Конверт изготавливался из пластика, гладкого снаружи и покрытого ворсом с внутренней стороны, и имел отверстия для шпинделя, который вращал носитель, прорезь для головок и оптопары считывания индекса.

В самом начале разбивка флоппи-дисков на секторы была жесткой, то есть для каждого сектора пробивалось свое индексное отверстие. В дальнейшем количество индексных отверстий сократили до одного, соответствующего началу дорожки. Поэтому некоторое время сосуществовали флоппи-диски типа Hard Sectored (жесткая разбивка на секторы) и Soft Sectored (одно индексное отверстие). За счет внутренних резервов объем носителя был доведен со 100 до 256 Кбайт, что и осталось физическим пределом для стандартных 8-дюймовых дискет. До конца 70-х годов приводы флоппи-дисков устанавливались в основном в мини-, а потом и в микроЭВМ (привычный нам ПК относится именно к классу микроЭВМ. - Прим. ред. ). Вследствие этого объем производства флоппи-накопителей был невелик, а потому и цены на них зашкаливали за 1000 долларов.

Первым серийным персональным компьютером, в котором применялись гибкие диски размером 8 дюймов, был Apple II, продемонстрированный в виде прототипа в 1976 году. Однако всего несколькими месяцами раньше фирма «Шугарт» объявила о выпуске привода для флоппи-дисков размером 5,25 дюйма по вполне приемлемой цене в 390 долларов. Однако дискеты размером 8 дюймов применялись еще довольно долго, а конструкции приводов блистали разнообразием. Например, в персональном компьютере Rainbow (DEC) для снижения стоимости два устройства имели общий привод блока головок, так что одновременно могло происходить обращение только к одной дискете. Кстати, к вопросу о долголетии. Флоппи-диски размером 8 дюймов выпускаются до сих пор: кто не верит, может проверить сайт фирмы Imation (http://www.imation.com , бывшее подразделение 3M).

Итак, в 1976 году произошло первое уменьшение размеров дискеты c 8 до 5,25 дюйма. Объем ее ненадолго стал равен 180 Кбайт, что было явно недостаточно, поэтому вскоре появились дискеты, запись на которые производилась с обеих сторон. Они получили название Double Density («Двойная Плотность»), хотя была повышена как раз не плотность, а объем. Именно такие приводы были установлены в персональном компьютере IBM PC, увидевшем свет в 1981 году.

По мере роста объемов программ и данных становилось ясно, что и объем дискеты 360 Кбайт явно недостаточен. Был разработан новый формат и, соответственно, новые дискеты и приводы. Для изготовления дискет объемом 1,2 Мбайт были применены улучшенные магнитные материалы, что позволило при снижении ширины дорожки вдвое и увеличении плотности записи получить тем не менее удовлетворительный уровень сигнала от головки чтения. Увеличение количества дорожек ровно вдвое (с 48 до 96) позволило сохранить обратную совместимость, то есть привод для дискет емкостью 1,2 Мбайт мог прочитать дискету емкостью 360 Кбайт. На дискете, что интересно, не было вырезов или отверстий, при помощи которых привод мог бы определить ее тип, эта информация записывалась в оглавлении.

Однако, достигнув приличной (и практически предельной для данной технологии) плотности, дискета размером 5,25 дюйма все еще страдала от «детских болезней», то есть недостаточной механической прочности и степени защиты носителя от внешних воздействий. Через отверстие для блока головок поверхность легко загрязнялась, особенно если дискета хранилась не в конверте. Дискета была в буквальном смысле гибкой: ее можно было свернуть трубочкой и... выкинуть после этого в ближайшее мусорное ведро. Надписи на наклейке можно было делать только мягким фломастером, так как шариковая ручка или карандаш продавливали материал конверта. Так мягкой дискете пришло время обрести твердый панцирь.

В 1980 году Sony продемонстрировала дискету и привод нового стандарта - размером 3,5 дюйма . Теперь ее стало трудно называть гибкой или флоппи - «хлопающей». Сплошной корпус из твердого пластика и отсутствие индексного отверстия обеспечивает механическую защиту носителя. Единственное оставшееся отверстие, предназначенное для доступа головок к носителю, прикрывается подпружиненной металлической шторкой. Для защиты от случайной перезаписи служит не заклеиваемый вырез, как на 5,25-дюймовой дискете (попробуйте в нужный момент найти необходимый для этого кусочек черной липкой бумаги!), а подвижная заслонка, являющаяся частью конструкции корпуса. Первоначально емкость дискеты размером 3,5 дюйма составляла 720 Кбайт (Double Density, DD), а затем выросла до 1,44 Мбайт (High Density, HD).

Именно такой привод (и только он один) устанавливался в компьютеры нашумевшей и достаточно провальной из-за несовместимых инноваций серии компьютеров IBM PS/2. В дальнейшем этот стандарт ввиду очевидных преимуществ вытеснил дискеты 5,25 дюйма. Правда, более удобные дискеты стандарта Sony в жестком пластиковом корпусе еще долго проигрывали «пятидюймовкам» по соотношению «цена/емкость», да и проблема совместимости долго давала знать о себе: 3,5-дюймовые дисководы далеко не везде можно было найти.

Последнее эволюционное усовершенствование дискеты было предпринято фирмой Toshiba в конце 80-х годов. За счет улучшения технологии производства носителей и способов записи емкость дискеты была повышена вдвое - до 2,88 Мбайт. Однако этот формат не прижился в силу целого ряда причин. Большая скорость обмена, принятая в приводе этого формата (более 1 Мбит/с), не поддерживалась большинством ранее выпущенных контроллеров и чипсетов, рассчитанных на скорость 500 Кбит/с, то есть для использования нового привода требовалось приобрести соответствующую карту. Стоимость такой дискеты высока и составляет несколько долларов по сравнению примерно с 50 центами для обычной дискеты емкостью 1,44 Мбайт. И наконец, инерция огромной массы приводов для дискет 1,44 Мбайт, уже имевшихся к тому времени, не позволила раскачать рынок в сторону 2,88-мегабайтного носителя - использование нестандартного формата могло затруднить обмен с внешним миром.

Анатомия дискеты

Как и любой другой магнитный дисковый носитель, гибкий диск разбит на концентрически расположенные дорожки. Дорожки, в свою очередь, разбиты на секторы. Перемещение головки для доступа к различным дорожкам осуществляется при помощи специального привода позиционирования головки, который перемещает в радиальном направлении блок магнитных головок от одной дорожки к другой. Доступ к различным секторам внутри дорожки осуществляется просто за счет вращения носителя. Интересно, что нумерация дорожек начинается с «0», а секторов - с «1», причем эта система впоследствии была перенесена и на жесткие диски.

Принцип записи информации на дискету - такой же, как и в магнитофоне: происходит непосредственный механический контакт головки с магнитным слоем, нанесенным на искусственную пленку - майлар. Этим обусловливается невысокая скорость чтения/записи (носитель не может быстро двигаться относительно головки), невысокие надежность и долговечность (ведь происходит механическое стирание, износ носителя). В отличие от магнитофона, запись осуществляется без высокочастотного подмагничивания - перемагничиванием материала носителя до насыщения.

Как уже отмечалось, первоначально разметка 8-дюймовой дискеты на секторы была жесткой, то есть началу каждого сектора соответствовало индексное отверстие, прохождение которого через оптопару вызывало электрический импульс. Это упрощало конструкцию контроллера (не надо отслеживать начало каждого сектора) и накопителя (не требуется поддерживать высокую стабильность скорости вращения), но ограничивало увеличение емкости за счет внутренних резервов и снижало прочность. Впоследствии благодаря прогрессу микроэлектроники количество индексных отверстий сократилось до одного, соответствующего заголовку дорожки, а опознавание заголовков секторов производилось контроллером. В дискетах размером 3,5 дюйма индексное отверстие отсутствует, синхронизация производится исключительно за счет чтения заголовков.

Позиционирование головки первое время чаще всего осуществлялось при помощи механизма «шаговый двигатель-винт-гайка». Блок головок крепился на каретке, двигающейся по направляющим, параллельным радиусу дискеты. В каретке же имелось отверстие, через которое проходил винт, а на отверстии имелся выступ, входящий в резьбу на винте и исполнявший роль участка резьбы гайки. Шаговый двигатель вращал ходовой винт, перемещая в радиальном направлении блок головок посредством гайки за один шаг на одну дорожку. На дискете размером 8 дюймов только такой механизм мог обеспечить точное позиционирование каретки при ее большом ходе (порядка 60 мм). После появления гибких дисков меньших размеров (5,25 и 3,5 дюйма) была разработана другая, применяющаяся до сих пор кинематическая схема привода головок. В ее основе лежит гибкая упругая металлическая полоска, одним концом укрепленная на каретке, а другим - на барабане, насаженном на вал шагового двигателя. При повороте вала двигателя (и барабана) полоска наматывается или сматывается, другим своим концом перемещая каретку с блоком головок поступательно по радиусу дискеты.

Общие принципы конструкции блока головок классических дискет претерпели мало изменений. Их особенность заключается в наличии двух головок туннельного стирания, расположенных по бокам позади от головки записи/воспроизведения. Роль этих головок заключается в исключении взаимовлияния информации, записанной на соседних дорожках. Проиллюстрировать их работу можно на таком примере: один человек посыпает дорожку песком, а двое, идущие за ним, сметают внутрь весь песок, попавший за края дорожки.

В приводах, которые должны прийти на смену классической дискете, используются еще более сложные головки, которые должны взаимодействовать с двумя разными носителями, иногда даже основанными на разных принципах работы.

Дискета еще успеет простудиться на похоронах своих «убийц»

Итак, эволюционное развитие дискеты закончилось в силу того, что технология достигла предела. Наступил период революций, причем, как и при революции политической, каждый революционер лучше всех знает, что нужно «революционизируемым» пользователям, и действует в соответствии с этим. Результатом явилось множество форматов, отличающихся друг от друга, так что реально совместимость между всеми этими устройствами обеспечивается только благодаря тому, что они могут работать и с дискетой емкостью 1,44 Мбайт. «Убийцы» флоппи-диска выстраиваются в очередь: толкаются локтями и мешают друг другу. Перечислим лишь самые «громкие» имена этих горе-киллеров:

  • LS-120 (Laser Servo) является детищем Mitsubishi Electronics America и Winstation Systems, обладает емкостью 120 Мбайт и максимальной скоростью обмена 4 Мбайт/с (для интерфейса SCSI). Может также подсоединяться через интерфейс IDE. Как и в новом 200-мегабайтном HiFD-дисководе от Sony, в этом приводе используются различные головки для работы с дискетой емкостью 1,44 Мбайт и с носителем увеличенной емкости. Для чтения/записи носителя емкостью 120 Мбайт используется магнитная головка с «лазерным прицелом». То есть позиционирование головки осуществляется подобно тому, как это происходит в приводах CD-ROM, но только по специально нанесенным при изготовлении носителя служебным дорожкам, не подлежащим перезаписи. На поверхности дискеты LS-120 умещается 2490 дорожек на дюйм против 135 дорожек/дюйм у обычных 1,44-мегабайтных флоппи. Аналог LS-120 по принципу действия и объему, SuperDisk Drive появился в результате разработки фирмы Imation (ранее подразделение 3M).
  • Дискета и привод формата HiFD (High Capacity Floppy Disk) разработаны совместно Sony, TEAC, Alps и Fuji. При скорости вращения шпинделя 3600 об/мин обеспечивается скорость передачи порядка 600 Кбайт/с (по другим данным, производительность Sony HiFD достигает 3,6 Мбайт/с - тестирование нашей лаборатории покажет. - Прим. ред. ). Емкость картриджа составляет 200 Мбайт.
  • Привод UHC-31130 придумали Mitsumi Electric и Swan Instruments.
  • Дисковод Ultra High Density (UHD) от Caleb Technology Corp имеет емкость 144 Мбайт. По информации разработчиков, данный накопитель с интерфейсом IDE обеспечивает семикратный прирост производительности по сравнению с традиционным флоппи-дисководом. Caleb UHD имеет заявленную скорость переноса данных 970 Кбайт/с, стоит порядка 70 долларов и в перспективе планируется нарастить емкость носителя до 540 Мбайт.
  • Pro-FD от Samsung имеет емкость 123 Мбайт и скорость обмена 625 Кбайт/с. Для позиционирования используется исключительно магнитная технология с самосовмещением.

Одно только изобилие технологий и форматов, собравшихся на «похороны» дискеты, наводит на мысль о том, что слухи о ее смерти сильно преувеличены. Причина широкой популярности (может быть, вынужденной, так как замены ей при сложившейся ситуации нет и быть не может) дискеты состоит именно в том, что можно не проверять наличие определенного типа привода в той фирме, куда отсылаются данные: не нужно долго выяснять у секретаря, есть ли у них Zip или какой магнитооптикой они пользуются. По данным Disk/Trend, в прошлом году было продано около 100 миллионов приводов для дискет емкостью 1,44 Мбайт.

Флоппи-дисковод не только не умер, но даже и не ослабил позиций - по объему продаж в штуках он в 12 раз крепче всех своих конкурентов, вместе взятых, включая Iomega Zip.

Поэтому мое личное мнение таково: если кому и удастся похоронить дискету, то не всем этим «могильщикам» - они больше отталкивают друг друга, стремясь завладеть наследством виновника мероприятия, чем занимаются делом. Тем более что у них уже есть конкурент, обладающий главными качествами дискеты, а именно: полной и абсолютной совместимостью и массовостью. Имеется в виду CD. По мере снижения цен на однократно и многократно перезаписываемые диски и соответствующие приводы они будут получать все более широкое распространение. Их главное преимущество - «фора» из сотен миллионов уже установленных приводов и полная совместимость друг с другом.

Стандартный флоппи-дисковод имеет скорость передачи данных 62 Кбайт/с и среднее время поиска - 84 мс. Это наряду с шиной ISA (к которой до недавних пор подключались дисководы 1,44 Мбайт), является серьезным ограничением их производительности. Даже весьма медленные (по меркам накопителей высокой плотности) дисководы класса LS-120 имеют время поиска около 70 мс, а скорость передачи данных - до 565 Кбайт/с.

КомпьютерПресс 8"1999

Дискета - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х - конце 1990-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД - «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД - «накопитель на гибких магнитных дисках»).
Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или жёсткой. Запись и считывание дискет осуществляется с помощью специального устройства - дисковода гибких дисков (флоппи-дисковода).
Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения.

История
  • 1971 - Первая дискета диаметром в 200 мм (8″) с соответствующим дисководом была представлена фирмой IBM. Обычно само изобретение приписывается Алану Шугарту, работавшему в конце 1960-х годов в IBM.
  • 1973 - Алан Шугерт основывает собственную фирму Shugart Associates.
  • 1976 - Алан Шугерт разработал дискету диаметром 5,25″.
  • 1981 - Sony выводит на рынок дискету диаметром 3,5″ (90 мм). В первой версии объём составляет 720 килобайт (9 секторов). Поздняя версия имеет объём 1440 килобайт или 1,40 мегабайт (18 секторов). Именно этот тип дискеты становится стандартом (после того, как IBM использует его в своём IBM PC).
  • Позже появились так называемые ED-дискеты (от англ. Extended Density - «расширенная плотность»), имевшие объём 2880 килобайт (36 секторов), которые так и не получили широкого распространения.
Форматы
Хронология возникновения форматов дискет
Формат Год возникновения Объём в килобайтах
8 1971 80
8″ 1973 256
8″ 1974 800
8″ двойной плотности 1975 1000
5,25″ 1976 110
5,25″ двойной плотности 1978 360
5,25″ четырёхкратной плотности 1982 720
5,25″ высокой плотности 1984 1200
3″ 1982 360
3″ двойной плотности 1984 720
3,5″ двойной плотности 1984 720
2″ 1985 720?
3,5″ высокой плотности 1987 1440
3,5″ расширенной плотности 1991 2880

Следует отметить, что фактическая ёмкость дискет зависела от способа их форматирования. Поскольку кроме самых ранних моделей, практически все флоппи-диски не содержали жёстко сформированных дорожек, дорога для экспериментов в области более эффективного использования дискеты была открыта для системных программистов. Результатом стало появление множества не совместимых между собою форматов дискет даже под одними и теми же операционными системами. Например, для RT-11 и её адаптированных в СССР версий количество находящихся в обороте несовместимых форматов дискеты превышало десяток. (Наиболее известные - MX, MY применяемые в ДВК).
Дополнительную путаницу внёс тот факт, что компания Apple использовала в своих компьютерах Macintosh дисководы, применяющие иной принцип кодирования при магнитной записи, чем на IBM PC. В результате, несмотря на использование идентичных дискет, перенос информации между платформами на дискетах не был возможен до того момента, когда Apple внедрила дисководы высокой плотности SuperDrive, работавшие в обоих режимах.
«Стандартные» форматы дискет IBM PC различались размером диска, количеством секторов на дорожке, количеством используемых сторон (SS обозначает одностороннюю дискету, DS - двухстороннюю), а также типом (плотностью записи) дисковода. Тип дисковода маркировался как SD - одинарная плотность, DD - двойная плотность, QD - четверная плотность (использовался в клонах, таких как Robotron-1910 - 5,25″ дискета 720 К, Amstrad PC, ПК Нейрон - 5,25″ дискета 640 К, HD - высокая плотность (отличался от QD повышенным количеством секторов), ED - расширенная плотность.

8-дюймовые дисководы долгое время были предусмотрены в BIOS и поддерживались MS-DOS, но точной информации о том, поставлялись ли они потребителям, нет (возможно, поставлялись предприятиям и организациям и не продавались физическим лицам). Кроме вышеперечисленных вариаций форматов, существовал целый ряд усовершенствований и отклонений от стандартного формата дискет.
Наиболее известные - 320/360 Кб дискеты Искра-1030/Искра-1031 - фактически представляли из себя SS/QD дискеты, но бут-сектор их был отмаркирован как DS/DD. В результате стандартный дисковод IBM PC не мог прочесть их без использования специальных драйверов (800.com), а дисковод Искра-1030/Искра-1031, соответственно, не мог читать стандарные дискеты DS/DD от IBM PC.
Специальные драйверы-расширители BIOS 800, pu_1700 и ряд других позволяли форматировать дискеты с произвольным числом дорожек и секторов. Поскольку дисководы обычно поддерживали от одной до 4 дополнительных дорожек, а также позволяли, в зависимости от конструкционных особенностей, отформатировать на 1-4 сектора на дорожке больше, чем положено по стандарту, эти драйвера обеспечивали появление таких нестандартных форматов как 800 Кб (80 дорожек, 10 секторов) 840 Кб (84 дорожки, 10 секторов) и т. д. Максимальная ёмкость, устойчиво достигавшаяся таким методом на 3,5″ HD-дисководах, составляла 1700 Кб.
Эта техника была впоследствии использована в Windows 98, а также Майкрософтовском формате дискет DMF, расширившим ёмкость дискет до 1,68 Мб за счёт форматирования дискет на 21 сектор в аналогичном IBMовском формате XDF. XDF использовался в дистрибутивах OS/2, а DMF - в дистрибутивах различных программных продуктов от Майкрософт.
Драйвер pu_1700 позволял также обеспечивать форматирование со сдвигом и интерливингом секторов - это ускоряло операции последовательного чтения-записи, но лишало совместимости даже при стандартном количестве секторов, сторон и дорожек. Наконец, достаточно частой модификацией формата дискет 3,5″ является их форматирование на 1,2 Мб (с пониженным числом секторов). Эта возможность обычно может быть включена в BIOS современных компьютеров. Такое использование 3,5″ характерно для Японии и ЮАР. В качестве побочного эффекта, активация этой настройки BIOS обычно даёт возможность читать дискеты, отформатированные с использованием драйверов типа 800.
В дополнителных (нестандартных) дорожках и секторах иногда размещали данные защиты от копирования проприетарных дискет. Стандартные программы, такие как diskcopy, не переносили эти сектора при копировании. Неформатированная ёмкость дискеты 3,5″, определяемая плотностью записи и площадью носителя, составляет 2 Мб.
Высота дисковода для 5,25″ дискет равна 1 U. Все дисководы компакт-дисков, включая Blu-ray, имеют ширину и высоту такую же, как у 5,25″ дисковода (это не относится к дисководам ноутбуков). Ширина дисковода 5,25″ почти равна трём его высотам. Это иногда использовали производители корпусов ЭВМ, где три устройства, помещённые в квадратную «корзину», могли быть вместе с ней переориентированы с горизонтального на вертикальное расположение.

(МО), которые представляли собой жёсткий полимерный диск, чтение с которого производилось лазером, а запись - при помощи комбинированного воздействия лазера (для нагрева участка поверхности) и неподвижного магнита (для перемагничивания информационного слоя). Они не являются полностью магнитными, хотя и используют картриджи, по форме напоминающие дискеты.

История

Устройство дискеты 3½″

Iomega Zip

К середине 90-х ёмкости дискеты даже в 2,88 МБ уже было недостаточно. На смену дискете 3,5″ претендовали несколько форматов, среди которых наибольшую популярность завоевали дискеты Iomega Zip. Так же, как и дискета 3,5″, носитель Iomega Zip представлял собой мягкий полимерный диск, покрытый ферромагнитным слоем и заключённый в жёсткий корпус с защитной шторкой. В отличие от 3,5″-дискеты, отверстие для магнитных головок располагалось в торце корпуса, а не на боковой поверхности. Существовали дискеты Zip на 100, 250, а к концу существования формата - и 750 МБ. Кроме бо́льшего объёма, диски Zip обеспечивали более надёжное хранение данных и более высокую скорость чтения и записи, чем 3,5″. Однако они так и не смогли вытеснить трёхдюймовые дискеты из-за высокой цены как дисководов, так и дискет, а также из-за неприятной особенности приводов, когда дискета с механическим повреждением диска выводила из строя дисковод, который, в свою очередь, мог испортить вставленную в него после этого дискету.

Форматы

Хронология возникновения форматов дискет
Формат Год возникновения Объём в килобайтах
8″ 80
8″ 256
8″ 800
8″ двойной плотности 1000
5¼″ 110
5¼″ двойной плотности 360
5¼″ четырёхкратной плотности 720
5¼″ высокой плотности 1200
3″ 360
3″ двойной плотности 720
3½″ двойной плотности 720
2″ 720
3½″ высокой плотности 1440
3½″ расширенной плотности 2880

Следует отметить, что фактическая ёмкость дискет зависит от способа их форматирования. Поскольку, кроме самых ранних моделей, практически все флоппи-диски не содержат жёстко сформированных дорожек, дорога для экспериментов в области более эффективного использования дискеты была открыта для системных программистов. Результатом стало появление множества не совместимых между собою форматов дискет даже под одними и теми же операционными системами.

Форматы дискет в оборудовании IBM

«Стандартные» форматы дискет IBM PC различались размером диска, количеством секторов на дорожке, количеством используемых сторон (SS обозначает одностороннюю дискету, DS - двухстороннюю), а также типом (плотностью записи) дисковода - тип дисковода маркировался:

  • SD (англ. Single Density , одинарная плотность, впервые появился в IBM System 3740),
  • DD (англ. Double Density , двойная плотность, впервые появился в IBM System 34),
  • QD (англ. Quadruple Density , четверная плотность, использовался в отечественных клонах Robotron-1910 - 5¼″ дискета 720 К, Amstrad PC, Нейрон И9.66 - 5¼″ дискета 640 К),
  • HD (англ. High Density , высокая плотность, отличался от QD повышенным количеством секторов),
  • ED (англ. Extra High Density , сверхвысокая плотность).

В дополнительных (нестандартных) дорожках и секторах иногда размещали данные защиты от копирования проприетарных дискет. Стандартные программы, такие, как diskcopy , не переносили эти сектора при копировании.

Рабочие плотности дисководов и ёмкости дискет в килобайтах
Параметр магнитного покрытия 5¼″ 3½″
Двойная плотность (DD) Четверная плотность (QD) Высокая плотность (HD) Двойная плотность (DD) Высокая плотность (HD) Сверхвысокая плотность (ED)
Основа магнитного слоя Fe Co Co
Коэрцитивная сила , 300 300 600 600 720 750
Толщина магнитного слоя , микродюйм 100 100 50 70 40 100
Ширина дорожки, мм 0,300 0,155 0,115 0,115 0,115
Плотность дорожек на дюйм 48 96 96 135 135 135
Линейная плотность 5876 5876 9646 8717 17434 34868
Ёмкость
(после форматирования)
360 720 1200
(1213952)
720 1440
(1457664)
2880
Сводная таблица форматов дискет, используемых в IBM PC и совместимых ПК
Диаметр диска, ″ 5¼″ 3½″
Ёмкость диска, Кбайт 1200 360 320 180 160 2 880 1 440 720
Байт описания носителя в MS-DOS F9 16 FD 16 FF 16 FC 16 FE 16 F0 16 F0 16 F9 16
Количество сторон (головок) 2 2 2 1 1 2 2 2
Количество дорожек на каждой стороне 80 40 40 40 40 80 80 80
Количество секторов на дорожке 15 9 8 9 8 36 18 9
Размер сектора, байт 512
Количество секторов в кластере 1 2 2 1 1 2 1 2
Длина FAT (в секторах) 7 2 1 2 1 9 9 3
Количество FAT 2 2 2 2 2 2 2 2
Длина корневого каталога в секторах 14 7 7 4 4 15 14 7
Максимальное количество элементов в корневом каталоге 224 112 112 64 64 240 224 112
Общее количество секторов на диске 2400 720 640 360 320 5 760 2 880 1 440
Количество доступных секторов 2371 708 630 351 313 5 726 2 847 1 426
Количество доступных кластеров 2371 354 315 351 313 2 863 2 847 713

Первой (точнее, 0-й) является нижняя головка. В односторонних дисководах фактически используется только нижняя головка, а верхняя заменяется войлочной прокладкой. При этом на односторонних дисководах можно было использовать двухсторонние дискеты, отформатировав каждую сторону отдельно и переворачивая её при необходимости, но чтобы этой возможностью воспользоваться, в пластиковом конверте 8-дюймовой дискеты требовалось прорезать второе индексное окно, симметрично первому.

Все дисководы гибких дисков имеют скорость вращения шпинделя 300 оборотов в минуту, за исключением дисковода для гибких дисков диаметром 5¼″ высокой плотности, шпиндель которого вращается со скоростью 360 мин −1 .

Форматы дискет в прочем зарубежном оборудовании

Дополнительную путаницу внёс тот факт, что компания Apple использовала в своих компьютерах Macintosh дисководы, применяющие иной принцип кодирования при магнитной записи, чем на IBM PC - в результате, несмотря на использование идентичных дискет, перенос информации между платформами на дискетах не был возможен до того момента, когда Apple внедрила дисководы высокой плотности SuperDrive, работавшие в обоих режимах.

Достаточно частой модификацией формата дискет 3½″ является их форматирование на 1,2 МБ (с пониженным числом секторов). Эта возможность обычно может быть включена в BIOS современных компьютеров. Такое использование 3½″ характерно для Японии и ЮАР . В качестве побочного эффекта, активация этой настройки BIOS обычно даёт возможность читать дискеты, отформатированные с использованием драйверов типа 800.com .

Особенности использования дискет в отечественной технике

Кроме вышеперечисленных вариаций форматов, существовал целый ряд усовершенствований и отклонений от стандартного формата дискет:

  • например, для RT-11 и её адаптированных в СССР версий количество находящихся в обороте несовместимых форматов дискеты превышало десяток. Наиболее известные - применяемые в ДВК MX, MY;
  • также известны 320/360-килобайтные дискеты Искра-1030/Искра-1031 - фактически они представляли собой SS/QD-дискеты, но их загрузочный сектор был отмаркирован как DS/DD. В результате стандартный дисковод IBM PC не мог прочесть их без использования специальных драйверов (типа 800.com), а дисковод Искра-1030/Искра-1031 , соответственно, не мог читать стандартные дискеты DS/DD от IBM PC;
  • в компьютерах платформы ZX-Spectrum применялись дискеты 5.25″ и 3.5″, но применялся свой собственный уникальный формат TR-DOS - 16 секторов на дорожке, каждый сектор по 256 байт (вместо 512 байт, стандартных для IBM PC). Поддерживались как двухсторонние, так и односторонние дискеты и дисководы. В результате объём данных составлял 640 и 320 Кб соответственно. Формат поддерживает только корневой каталог, который занимает только первые 8 секторов 0-й дорожки, в 9-м секторе располагается системная информация о дискете - тип (TR-DOS или нет), одно или двухсторонний диск, общее количество файлов и количество свободных секторов (не байт, а именно секторов). Сектора с 10 по 16 на 0-й дорожке не используются. Все файлы располагаются только последовательно - формат TR-DOS понятия не имеет о фрагментации, а максимальный размер файла - 64 Кб. После удаления файла внутри занятого пространства, появляются свободные сектора, которые занять уже нельзя до тех пор, пока не будет выполнена команда уплотнения диска ″Move″. На IBM PC совместимых компьютерах такие дискеты можно прочитать и записать только с помощью специальных программ, например ZX Spectrum Navigator v.1.14 или ZXDStudio.

Кроме формата TR-DOS , в ZX-Spectrum совместимых компьютерах часто применялись и произвольные форматы дисков. Некоторые электронные журналы и игры на всю дискету использовали свой собственный формат, вообще ни с чем не совместимый. Могли использовать сектора по 512 байт, и даже по 1024 байт, и нередко комбинировали разные размеры секторов на одной дорожке, например, по 256 и по 1024 байт, и просто для разных дорожек применялись разные форматы. Например, так делали в электронном журнале ZX-Format. Причём, от номера выпуска к номеру, данный журнал постоянно менял формат дорожек дискет. Делалось это для двух целей: Во-первых, для увеличения объёма данных на дискете, во-вторых, для защиты дискет от пиратского копирования. Такие дискеты на ZX-Spectrum совместимых компьютерах пользователей можно было только прочитать, запустить с них журнал или игру, но нельзя было ничем скопировать. Для копирования таких дискет, для каждого отдельного номера журнала ZX-Format или игры, нужно было написать на ассемблере свой индивидуальный форматер и копировщик, предварительно взломав остальные ступени защиты. Разумеется, нельзя такие дискеты прочитать и скопировать и на IBM PC совместимых компьютерах. Однажды попался вообще уникальный формат - кроме нестандартного размера секторов на дорожке (5 секторов по 1024 байта), номера всех 5 секторов были одинаковыми. Для запуска ПО с такой дискеты использовался специальный загрузчик, размещённый на первой после каталога дорожке со стандартным для ZX-Spectrum формата TR-DOS . В ZX-Spectrum совместимых компьютерах одинаковым образом применялись как 5.25″, так и 3.5″ дискеты, формат при этом не зависит ни от размера дискеты, ни от поддерживаемой ей плотности. Но для использования дискет 3.5″ высокой плотности HD, нужно было изолентой заклеить боковое окошко плотности. Дискеты 5.25″ высокой плотности HD можно применять в ZX-Spectrum только в случае использования дисковода, который так же поддерживает плотность HD, но перемычками дисковод нужно предварительно перевести на формат SD (720 Кб).

Драйвер pu_1700 позволял также обеспечивать форматирование со сдвигом и интерливингом секторов - это ускоряло операции последовательного чтения-записи, так как головка при переходе на следующий цилиндр оказывалась перед первым сектором. При использовании обычного форматирования, когда первый сектор всегда находится за индексным отверстием (5¼″) или за зоной прохождения над герконом или датчиком Холла магнитика, закреплённого на моторе (3½″), за время шага головки начало первого сектора успевает проскочить, поэтому дисководу приходится совершать лишний оборот.

Специальные драйверы-расширители BIOS (800, pu_1700, vformat и ряд других) позволяли форматировать дискеты с произвольным числом дорожек и секторов. Поскольку дисководы обычно поддерживали от одной до четырёх дополнительных дорожек, а также позволяли, в зависимости от конструкционных особенностей, отформатировать на 1-4 сектора на дорожке больше, чем положено по стандарту, эти драйверы обеспечивали появление таких нестандартных форматов, как 800 КБ (80 дорожек, 10 секторов), 840 КБ (84 дорожки, 10 секторов) и т. д. Максимальная ёмкость, устойчиво достигавшаяся таким методом на 3½″ HD-дисководах, составляла 1700 КБ. Эта техника была впоследствии использована в форматах дискет DMF

Половина владельцев персональных компьютеров даже не подозревают, что есть такая технология, как магнитная запись, а остальная половина пользователей уверены, что эта запись, включая носитель - гибкий магнитный диск, канула в лету. Однако если углубиться в данный вопрос, можно обнаружить что заводы-изготовители продолжают выпуск магнитных дисков и лент. Для чего? Где применяется морально устаревшая технология? В фокусе данной статьи - магнитная запись на разные носители информации, технологии XX века.

Историческая справка

Многие источники массовой информации указывают на то, что магнитные диски пришли на смену магнитным лентам как более компактные носители. Это неправда. На самом деле дискеты - это заменители перфокарт. А конкурентами магнитных лент они быть не могут по одной простой причине - их емкости несоизмеримы.

Выпуск самого первого магнитного диска произведен компанией IBM, которая в 1971 году показала миру дискету диаметром восемь дюймов и дисковод, способный производить запись и считывание данных с носителя информации. Емкость дискеты составляла сто килобайт, чего было вполне достаточно для хранения и того времени. Спустя несколько лет на рынке появился носитель размером пять с четвертью дюймов, а в 1981 году всемирно известный концерн Sony представил на рынке дискету диаметром 3,5 дюйма. Поначалу объем дискеты составлял 720 килобайт. Но позже, благодаря увеличению плотности записи, появились носители емкостью 1,44 Мб и 2,88 Мб.

И если говорить о магнитной записи в целом

Перенос информации может осуществляться не только на гибкий магнитный диск, но и на пленку и жесткие носители. Принцип действия записи на мягкий носитель известен всем. Запись на магнитный носитель осуществляется последовательно. Соответственно, и считывание должно происходить обратным образом. Это для и является огромным минусом. Но есть и свои плюсы, ведь, благодаря высокой плотности записи, один носитель может хранить большой объем информации. Примером таких устройств являются стримеры. А вот запись на жесткий носитель позволяет получить доступ к данным значительно быстрее благодаря всего двум механизмам - вращающемуся шпинделю, который раскручивает поверхность диска с данными, и движущейся считывающей информацию головке.

На вершине славы

Если емкость гибких магнитных дисков ограничивается площадью поверхности носителя, то мягкую пленку можно намотать на бобину длиной с полкилометра. Что активно и делается заводами-изготовителями. В XXI веке интерес к стримерам не только не угас, а, наоборот, вырос. Производители разрабатывают и совершенствуют новые технологии для этих устройств. На один такой, небольшой носитель с магнитной лентой можно записать от 0,5 до 4 терабайт информации. Стримеры широко используются в крупных корпорациях для хранения архивов баз данных. В киностудиях на носителях размещают фильмы, отправленные в архив. Администраторы крупных интернет-ресурсов на картриджах к стримеру хранят резервные копии всех важных сайтов. И всё это благодаря нескольким устройства, которые до сих пор не удалось превзойти ни одной технологии.

  1. Огромная плотность записи при небольших размерах носителя.
  2. Низкое энергопотребление по сравнению с аналогичными носителями большой емкости.
  3. Высокая надежность и стабильность работы.

Триумф, который так и не состоялся

Как известно, монополия на рынке дает возможность устанавливать свои собственные цены, но ожидать какого-то грандиозного развития от продуктов, не имеющих аналогов, не стоит. Вышло так, что малоизвестная компания Iomega Zip вышла на рынок технологий ИТ в конце XX века с инновацией, которая не имела аналогов в мире. Представлен был дисковод и 3,5-дюймовые накопители на гибких магнитных дисках к нему, позволяющие записывать данные размером 100, 250 и 750 мегабайт на один носитель. Цена такого устройства была настолько завышена, что не только обычные пользователи, а и огромные корпорации предпочли воздержаться от покупки. Из-за низкого спроса производителю не сразу удалось узнать о том, что поврежденная дискета выводит из строя дисковод. Развиться технологии помешала лазерная запись, информация о которой не была засекречена от других производителей.

Устройство и конструкция гибкого накопителя информации

Слово «дискета» стало производным от английского слова diskette, которое, в свою очередь, стало сокращением от floppy disk. В переводе floppy означает «гибкий». В итоге дословно - гибкий магнитный диск. Как называется - разобрались. Осталось понять его конструкцию. Принцип действия сводится к наличию размеченной области на поверхности носителя и головки, способной производить запись и чтение, которая размещается в приводе. Помимо этого, в приводе размещен специальный вал, который занимается вращением гибкого диска. Доступ к поверхности магнитного носителя осуществляется через специальное окошко дискеты, длина которого позволяет головке перемещаться по всему радиусу поверхности диска. Для защиты магнитной поверхности окошко защищено специальной шторкой, которая открывается механическим путем при вставлении дискеты в привод. Отсутствие шторки на работоспособность устройства не влияет, но может повлечь за собой загрязнение поверхности, так как структура магнитного диска способна притягивать к себе пыль.

Принцип действия и небольшие странности

Принцип записи магнитного слоя на гибкий носитель довольно интересный. Помимо записывающей, в устройстве есть две контролирующие головки, которые находятся позади основной и смещены в стороны друг от друга. Их задачей является защита перезаписи информации на дорожках, находящихся рядом с записываемой. Если пишущая магнитная головка сильным импульсом затронула информацию, находящуюся рядом, то контролирующая головка это изменение отменяет. Выглядит это довольно странно со стороны. Ведь если взять для сравнения жесткий магнитный диск, можно увидеть, что он имеет всего одну головку для каждой поверхности диска. Дело в том, что пишущая головка, встроенная в привод гибких дисков, не имеет высокочастотного подмагничивания из-за сложности своей конструкции. Поэтому и было найдено такое простое и недорогое решение.

Вытеснение технологии с рынка ИТ

Буквально несколько лет назад при покупке персонального компьютера обязательным атрибутом в системном блоке являлись накопители на гибких магнитных дисках. Но интерес к устройству у пользователей быстро угас. И сейчас наличие 3,5-дюймового дисковода говорит о том, что владелец ПК имеет слабый компьютер. Причин такого исчезновения гибких накопителей с рынка много. Вот несколько из них.

  1. Малая емкость для записи. По сути, на диск нельзя записать даже одну песню.
  2. Ненадежность хранения информации. Дискета размагничивается под действием больших магнитных полей. Например, разовая поездка на троллейбусе или метро, способна отформатировать дискету.
  3. Даже глупость, запущенная в СМИ производителями SSD-накопителей про опасные воздействия жесткого магнитного диска и всех накопителей с этой технологией, дала свой результат.

Безопасность прежде всего

Это может показаться странным, но дискета очень популярна в государственных структурах США, включая администрацию президента. Магнитный диск предназначен для авторизации пользователей при входе в систему управления. В то время как весь мир перешел на использование USB-ключей, Америка использует технологии прошлого века. Такой подход объясняется тем, что очень часто, завладев USB-ключом, мошенник получает доступ к закрытой информации. Немало художественных фильмов раскрывают эту проблему в сюжете.

С магнитными дисками всё иначе. Большую роль играют одновременно преимущества и недостатки гибких дисков. Помимо низкой стоимости, малых размеров, возможности перезаписи, быстрого считывания, определения носителя любой операционной системой без драйверов, к преимуществу можно отнести легкий вывод носителя из строя. Естественно, без возможности восстановления. Это главное преимущество дискеты. В случае непредвиденной ситуации носитель легко уничтожить вместе с важной информацией. Получить же новый ключ не составит особого труда, для этого достаточно обратиться в службу безопасности своей структуры.

Образовательная система

А вот русские дети о дискетах знают больше, чем их родители. Ведь большинство российских школ до сих пор имеют на балансе персональные компьютеры со встроенным дисководом для гибких магнитных дисков. А благодаря школьным программам по информатике, которые за несколько лет не претерпели особых изменений, все ученики получают и практические навыки пользования магнитными дисками. Ведь объем дискеты позволяет хранить на одном носителе два языка программирования начального уровня вместе с выполненными заданиями за весь год обучения. И без базовых знаний языков программирования BASIC и Turbo Pascal ни один технический вуз не откроет перед абитуриентом свои двери.

Инструмент системного администратора

Именно гибкий магнитный диск, а не USB-накопитель или системный администратор использует для обновления прошивки системных устройств, серверов и систем управления. Помимо этого, дискета служит для переноса ключей авторизации, системных настроек оборудования, настройки контроллеров и массивов. Не говоря уже о том, что банальное повреждение BIOS любого персонального компьютера можно исправить либо с помощью дискеты, либо программатором. Причин активного использования гибкого магнитного диска тут несколько.

  1. Для считывания данных с носителя используется встроенный в устройство дисковод, которому для работы не нужны драйверы. Никаких обнаружений и настройки.
  2. Дешевле дисковода и носителя с такой же отказоустойчивостью на рынке уже в течении десятилетия ничего нет.
  3. Нет потребности в больших объемах информации - 1,44 Мб для систем на базе Unix хватает для сохранения необходимых данных.

О развлечениях программистов

Из-за того, что структура магнитного диска представляет собой спираль, считывающей головке приходится постоянно передвигаться по поверхности носителя. При этом который перемещает эту головку, создает специфический звук в дисководе, который очень хорошо слышен в большом помещении. Именно этим и пользуются программисты уже многие годы. Используя один из языков программирования низкого уровня (Turbo Pascal или С+), с помощью специальных команд можно добиться управления шаговым с помощью последовательных и кратковременных обращений компьютера к разным данным, записанным по всему диску. Многим удается воспроизвести очень сложную мелодию с помощью нескольких дисководов, каждый из которых выполняет роль одного инструмента. В средствах массовой информации можно более подробно ознакомиться с этим видом развлечения.

В заключение

Вывод напрашивается один: гибкий магнитный диск, как и жесткий, рано списывать со счетов. Отработав в сфере ИТ порядка 25 лет, дискеты и винчестеры остаются востребованными во многих сферах жизнедеятельности человека. Наряду с недостатками, которые приписывают этим носителям информации, у них есть и много достоинств, которые можно увидеть при попытке познакомиться с технологией поближе. Естественно, не стоит обращать внимания на глупости недалеких людей, которые говорят про опасные воздействия жесткого магнитного диска, да и всей магнитной записи в целом. Всё оборудование, массово представленное на рынке, проходит не одну сертификацию, прежде чем попасть на прилавок.

Лучшие статьи по теме