Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Железо
  • Классификация нейронных сетей и их свойства. Типы архитектур нейронных сетей

Классификация нейронных сетей и их свойства. Типы архитектур нейронных сетей

Нейронные сети классифицируются по следующим видам обучения:

  1. нейронные сети проходящие обучение с учителем;
  2. нейронные сети проходящие обучение без учителя.

Рассмотрим эти виды немного подробнее.

Нейронные сети проходящие обучение с учителем.

При обучении с учителем подразумевается, что каждый вектор, входящий в существующий целевой вектор, который представляет из себя требуемый выход. Совместно они являются обучающей парой. Сеть обучается на нескольких обучающих парах.
Предоставляется выходной вектор, определяется выход сети и сравнивается с представленными векторами.
Далее изменяют веса в соответствии с математическим алгоритмом, который стремится уменьшить ошибку.
Векторы множества обучающих данных предъявляются последовательно. По мере прохода вычисляются ошибки и веса и подстраиваются для всех векторов, пока ошибка по обучающим данным не достигнет нужного уровня.

Нейронные сети, обучающиеся без помощи учителя.

Обучение без учителя выглядить намного более часто встречающейся моделью обучения особенно часто встречающююся в биологических нейронных сетях.

Развитая и другими учёными, она не требует целевой вектор для выходов. Из этого следует что, не требуются и сравнения с заранее подготовленными идеальными вариантами ответов. Обучающие данные состоят только из входных векторов.

Обучающий алгоритм меняет веса своей сети так, чтобы образовывались согласованные выходные векторы, тоесть чтобы предоставление достаточно схожих входных векторов выдавало похожие выходы.
Процесс обучения, последовательно, определяет статистические свойства предоставленных обучающих данных и группирует похожие векторы в классы.

Изменение весов

Нейронные сети так же делятся на следующие группы. С фиксированными связями – веса которых выбираются заранее исходя из задачи и с динамическими связями – которые перестраивают свои веса в процессе обучения.

Тип входных данных

Входные данные так же делятся на несколько; аналоговые входные данные представлены в виде действительных чисел и двоичные информация которых представляется в виде нулей и единиц.

Модели нейронной сети которые чаще всего используются на данный момент

Сети прямого распространения – все связи этой сети имеют строгое направление от входных нейронов к их выходам. Среди таких сетей хочется отметить: простейший персептрон автором которого является и многослойный персептрон .

Нейронные сети Реккурентного типа – данные с выходных нейронов или из скрытого слоя передается частично обратно на входные нейроны.

Радиально базисные функции – это нейронная сеть, в основе которой является наличие скрытого слоя из радиальных элементов и выходного слоя из линейных элементов. Такие сети довольно компактны и обучаются достаточно быстро.

Они были предложены в работах Broomhead and Lowe (1988) и Moody and Darkin (1989) .
Радиально базисная сеть пользуется следующими уникальными свойствами: один скрытый слой, нейроны только скрытого слоя имеют нелинейную функцию активации и синаптические веса скрытого и входного слоев являются единицей.

Сети Кохонена или Самоорганизующиеся карты – это класс сетей обычно обучается без помощи учителя и часто применяется в задачах связанных с распознаванием изображений.
Такие сети способны определять новые элементы во входных данных: если пройдя обучение сеть увидит набор данных, непохожий ни на один из знакомых образцов, то она классифицирует такой набор и не выявит его новизну.
Сеть Кохонена имеет всего два слоя: выходной и входной, составленный из радиальных элементов.

В последнее время все чаще и чаще говорят про так званные нейронные сети, дескать вскоре они будут активно применятся и в роботехнике, и в машиностроении, и во многих других сферах человеческой деятельности, ну а алгоритмы поисковых систем, того же Гугла уже потихоньку начинают на них работать. Что же представляют собой эти нейронные сети, как они работают, какое у них применение и чем они могут стать полезными для нас, обо всем этом читайте дальше.

Что такое нейронные сети

Нейронные сети – это одно из направлений научных исследований в области создания искусственного интеллекта (ИИ) в основе которого лежит стремление имитировать нервную систему человека. В том числе ее (нервной системы) способность исправлять ошибки и самообучаться. Все это, хотя и несколько грубо должно позволить смоделировать работу человеческого мозга.

Биологические нейронные сети

Но это определение абзацем выше чисто техническое, если же говорить языком биологии, то нейронная сеть представляет собой нервную систему человека, ту совокупность нейронов в нашем мозге, благодаря которым мы думаем, принимаем те или иные решения, воспринимаем мир вокруг нас.

Биологический нейрон – это специальная клетка, состоящая из ядра, тела и отростков, к тому же имеющая тесную связь с тысячами других нейронов. Через эту связь то и дело передаются электрохимические импульсы, приводящие всю нейронную сеть в состояние возбуждение или наоборот спокойствия. Например, какое-то приятное и одновременно волнующее событие (встреча любимого человека, победа в соревновании и т. д.) породит электрохимический импульс в нейронной сети, которая располагается в нашей голове, что приведет к ее возбуждению. Как следствие, нейронная сеть в нашем мозге свое возбуждение передаст и другим органам нашего тела и приведет к повышенному сердцебиению, более частому морганию глаз и т. д.

Тут на картинке приведена сильно упрощенная модель биологической нейронной сети мозга. Мы видим, что нейрон состоит из тела клетки и ядра, тело клетки, в свою очередь, имеет множество ответвленных волокон, названых дендритами. Длинные дендриты называются аксонами и имеют протяженность много большую, нежели показано на этом рисунке, посредством аксонов осуществляется связь между нейронами, благодаря ним и работает биологическая нейронная сеть в наших с вами головах.

История нейронных сетей

Какова же история развития нейронных сетей в науке и технике? Она берет свое начало с появлением первых компьютеров или ЭВМ (электронно-вычислительная машина) как их называли в те времена. Так еще в конце 1940-х годов некто Дональд Хебб разработал механизм нейронной сети, чем заложил правила обучения ЭВМ, этих «протокомпьютеров».

Дальнейшая хронология событий была следующей:

  • В 1954 году происходит первое практическое использование нейронных сетей в работе ЭВМ.
  • В 1958 году Франком Розенблатом разработан алгоритм распознавания образов и математическая аннотация к нему.
  • В 1960-х годах интерес к разработке нейронных сетей несколько угас из-за слабых мощностей компьютеров того времени.
  • И снова возродился уже в 1980-х годах, именно в этот период появляется система с механизмом обратной связи, разрабатываются алгоритмы самообучения.
  • К 2000 году мощности компьютеров выросли настолько, что смогли воплотить самые смелые мечты ученых прошлого. В это время появляются программы распознавания голоса, компьютерного зрения и многое другое.

Искусственные нейронные сети

Под искусственными нейронными сетями принято понимать вычислительные системы, имеющие способности к самообучению, постепенному повышению своей производительности. Основными элементами структуры нейронной сети являются:

  • Искусственные нейроны, представляющие собой элементарные, связанные между собой единицы.
  • Синапс – это соединение, которые используется для отправки-получения информации между нейронами.
  • Сигнал – собственно информация, подлежащая передаче.

Применение нейронных сетей

Область применения искусственных нейронных сетей с каждым годом все более расширяется, на сегодняшний день они используются в таких сферах как:

  • Машинное обучение (machine learning), представляющее собой разновидность искусственного интеллекта. В основе его лежит обучение ИИ на примере миллионов однотипных задач. В наше время машинное обучение активно внедряют поисковые системы Гугл, Яндекс, Бинг, Байду. Так на основе миллионов поисковых запросов, которые все мы каждый день вводим в Гугле, их алгоритмы учатся показывать нам наиболее релевантную выдачу, чтобы мы могли найти именно то, что ищем.
  • В роботехнике нейронные сети используются в выработке многочисленных алгоритмов для железных «мозгов» роботов.
  • Архитекторы компьютерных систем пользуются нейронными сетями для решения проблемы параллельных вычислений.
  • С помощью нейронных сетей математики могут разрешать разные сложные математические задачи.

Типы нейронных сетей

В целом для разных задач применяются различные виды и типы нейронных сетей, среди которых можно выделить:

  • сверточные нейронные сети,
  • реккурентные нейронные сети,
  • нейронную сеть Хопфилда.

Сверточные нейронные сети

Сверточные сети являются одними из самых популярных типов искусственных нейронных сетей. Так они доказали свою эффективность в распознавании визуальных образов (видео и изображения), рекомендательных системах и обработке языка.

  • Сверточные нейронные сети отлично масштабируются и могут использоваться для распознавания образов, какого угодно большого разрешения.
  • В этих сетях используются объемные трехмерные нейроны. Внутри одного слоя нейроны связаны лишь небольшим полем, названые рецептивным слоем.
  • Нейроны соседних слоев связаны посредством механизма пространственной локализации. Работу множества таких слоев обеспечивают особые нелинейные фильтры, реагирующие на все большее число пикселей.

Рекуррентные нейронные сети

Рекуррентными называют такие нейронные сети, соединения между нейронами которых, образуют ориентировочный цикл. Имеет такие характеристики:

  • У каждого соединения есть свой вес, он же приоритет.
  • Узлы делятся на два типа, вводные узлы и узлы скрытые.
  • Информация в рекуррентной нейронной сети передается не только по прямой, слой за слоем, но и между самими нейронами.
  • Важной отличительной особенностью рекуррентной нейронной сети является наличие так званой «области внимания», когда машине можно задать определенные фрагменты данных, требующие усиленной обработки.

Рекуррентные нейронные сети применяются в распознавании и обработке текстовых данных (в частотности на их основе работает Гугл переводчик, алгоритм Яндекс «Палех», голосовой помощник Apple Siri).

Нейронные сети, видео

И в завершение интересное видео о нейронных сетях.

    Шаг 4. Применяем правило 2. условием которого является данное утверждение. Получаем вывод исходного утверждения.

    Заметим, что для упрощения ситуации мы предположили, что в обоих случаях факты "Небо покрыто тучами" и "Барометр падает" уже известны системе. На самом деле система выясняет истинность или ложность факта, входящего в условие некоторого правила, спрашивая об этом пользователя в тот момент, когда она пытается применить правило. Приведенный пример сознательно выбран очень простым и не отражающим многих проблем, связанных с организацией вывода в экспертной системе. В частности, из примера может создаться впечатление, что прямая цепочка рассуждений эффективнее, чем обратная, что на самом деле, вообще говоря, не так. Эффективность той или иной стратегии вывода зависит от характера задачи и содержимого базы знаний. В системах диагностики чаще применяется прямой вывод, в то время как в планирующих системах более эффективным оказывается обратный вывод. В некоторых системах вывод основывается на сочетании обратного и ограниченно- прямого. Такой комбинированный метод получил название циклического.

  • 2.7 Объяснение решений

Объяснительный компонент ЭС объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование и повышает доверие пользователя к полученному результату. Поскольку системы, основанные на знаниях, реализуются на компьютерах, то и входная информация воспринимается или в виде, понятном компьютеру, т.е. в битах и байтах. Однако для того чтобы мог взаимодействовать неподготовленный пользователь, в нее требуется включить средства общения на естественном языке. Подавляющее большинство систем, основанных на знаниях, обладают достаточно примитивным интерфейсом на естественном языке - допустимые входные сообщения пользователя ограничены набором понятий, содержащихся в базе знаний. Итак, на примере простой ЭС и базы знаний диалог пользователя с системой можно представить себе следующим образом:

Система: Вы хотите узнать, нужно ли взять с собой зонтик?

Пользователь: Да.

Система: Верно ли, что небо покрыто тучами?

Пользователь: Да.

Система: Верно ли, что барометр падает?

Пользователь: Да.

Система: (после некоторого "размышления") Нужно взять с собой зонтик.

Как видно из этого примера, в ходе консультации инициатива диалога принадлежит системе, а сама консультация у ЭС выглядит так же, как и консультация у эксперта- человека: задается ряд вопросов и на основании их анализа выдается экспертное заключение.

Одной из наиболее важных проблем, характерных для систем, основанных на знаниях, является проблема представления знаний. Это объясняется тем, что форма представления знаний оказывает существенное влияние на характеристики и свойства системы. Для того чтобы манипулировать всевозможными знаниями из реального мира с помощью компьютера, необходимо осуществлять их моделирование. В таких случаях необходимо отличать знания, предназначенные для обработки компьютером, от знаний, используемых человеком.

При проектировании модели представления знаний следует учитывать однородность представления и простота понимания. Однородное представление приводит к упрощению механизма управления логическим выводом и упрощению управления знаниями. Представление знаний должно быть понятным экспертам и пользователям системы. В противном случае затрудняются приобретение знаний и их оценка. Однако выполнить это требование в равной степени, как для простых, так и для сложных задач довольно трудно. Обычно для несложных задач останавливаются на некотором среднем (компромиссном) представлении, но для решения сложных и больших задач необходимы структурирование и модульное представление.

Типичными моделями представления знаний являются: модели: продукционная, основанная на использовании фреймов, семантической сети, логическая модель.

23. Нейронные сети. Виды нейронных сетей. Алгоритмы обучения нейронных сетей. Применение нейронных сетей для задач распознавания образов.

Искусственная нейронная сеть (ИНС) - математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей - сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге при мышлении, и при попытке смоделировать эти процессы. Первой такой моделью мозга был перцептрон. Впоследствии эти модели стали использовать в практических целях, как правило в задачах прогнозирования.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах. Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п. С математической точки зрения обучение нейронных сетей, это многопараметрическая задача нелинейной оптимизации. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. С точки зрения развития вычислительной техники и программирования, нейронная сеть - способ решения проблемы эффективного параллелизма. А с точки зрения искусственного интеллекта, ИНС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения (моделирования) естественного интеллекта с помощью компьютерных алгоритмов.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются . Возможность обучения - одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке.

Известные применения

Распознавание образов и классификация. В качестве образов могут выступать различные по своей природе объекты: символы текста, изображения, образцы звуков и т. д. При обучении сети предлагаются различные образцы образов с указанием того, к какому классу они относятся. Образец, как правило, представляется как вектор значений признаков. При этом совокупность всех признаков должна однозначно определять класс , к которому относится образец. В случае, если признаков недостаточно, сеть может соотнести один и тот же образец с несколькими классами, что неверно . По окончании обучения сети ей можно предъявлять неизвестные ранее образы и получать ответ о принадлежности к определённому классу.

Топология такой сети характеризуется тем, что количество нейронов в выходном слое, как правило, равно количеству определяемых классов. При этом устанавливается соответствие между выходом нейронной сети и классом, который он представляет. Когда сети предъявляется некий образ, на одном из её выходов должен появиться признак того, что образ принадлежит этому классу. В то же время на других выходах должен быть признак того, что образ данному классу не принадлежит . Если на двух или более выходах есть признак принадлежности к классу, считается что сеть «не уверена» в своём ответе.

Принятие решений и управление. Классификации подлежат ситуации, характеристики которых поступают на вход нейронной сети. На выходе сети должен появится признак решения. При этом в качестве входных сигналов используются различные критерии описания состояния управляемой системы.

Кластеризация. Под кластеризацией понимается разбиение множества входных сигналов на классы, при том, что ни количество, ни признаки классов заранее неизвестны. После обучения такая сеть способна определять, к какому классу относится входной сигнал. Сеть также может сигнализировать о том, что входной сигнал не относится ни к одному из выделенных классов - это является признаком новых, отсутствующих в обучающей выборке, данных. Таким образом, подобная сеть может выявлять новые, неизвестные ранее классы сигналов . Соответствие между классами, выделенными сетью, и классами, существующими в предметной области, устанавливается человеком. Кластеризацию осуществляют, например, нейронные сети Кохонена.

Прогнозирование и аппроксимация . Способности нейронной сети к прогнозированию напрямую следуют из ее способности к обобщению и выделению скрытых зависимостей между входными и выходными данными. После обучения сеть способна предсказать будущее значение некой последовательности на основе нескольких предыдущих значений и/или каких-то существующих в настоящий момент факторов. Следует отметить, что прогнозирование возможно только тогда, когда предыдущие изменения действительно в какой-то степени предопределяют будущие . Например, прогнозирование котировок акций на основе котировок за прошлую неделю может оказаться успешным (а может и не оказаться), тогда как прогнозирование результатов завтрашней лотереи на основе данных за последние 50 лет почти наверняка не даст никаких результатов.

Сжатие данных и Ассоциативная память . Способность нейросетей к выявлению взаимосвязей между различными параметрами дает возможность выразить данные большой размерности более компактно, если данные тесно взаимосвязаны друг с другом. Обратный процесс - восстановление исходного набора данных из части информации - называется (авто)ассоциативной памятью. Ассоциативная память позволяет также восстанавливать исходный сигнал/образ из зашумленных/поврежденных входных данных. Решение задачи гетероассоциативной памяти позволяет реализовать память, адресуемую по содержимому .

Этапы решения задач

Сбор данных для обучения;

    Подготовка и нормализация данных;

    Выбор топологии сети;

    Экспериментальный подбор характеристик сети;

    Экспериментальный подбор параметров обучения;

    Собственно обучение;

    Проверка адекватности обучения;

    Корректировка параметров, окончательное обучение;

    Вербализация сети с целью дальнейшего использования.

    Следует рассмотреть подробнее некоторые из этих этапов.

Сбор данных для обучения

Выбор данных для обучения сети и их обработка является самым сложным этапом решения задачи. Набор данных для обучения должен удовлетворять нескольким критериям:

Репрезентативность - данные должны иллюстрировать истинное положение вещей в предметной области;

Непротиворечивость - противоречивые данные в обучающей выборке приведут к плохому качеству обучения сети;

Исходные данные преобразуются к виду, в котором их можно подать на входы сети. Каждая запись в файле данных называется обучающей парой или обучающим вектором . Обучающий вектор содержит по одному значению на каждый вход сети и, в зависимости от типа обучения (с учителем или без), по одному значению для каждого выхода сети. Обучение сети на «сыром» наборе, как правило, не даёт качественных результатов. Существует ряд способов улучшить «восприятие» сети.

Нормировка выполняется, когда на различные входы подаются данные разной размерности. Например, на первый вход сети подается величины со значениями от нуля до единицы, а на второй - от ста до тысячи. При отсутствии нормировки значения на втором входе будут всегда оказывать существенно большее влияние на выход сети, чем значения на первом входе. При нормировке размерности всех входных и выходных данных сводятся воедино;

Квантование выполняется над непрерывными величинами, для которых выделяется конечный набор дискретных значений. Например, квантование используют для задания частот звуковых сигналов при распознавании речи;

Фильтрация выполняется для «зашумленных» данных.

Кроме того, большую роль играет само представление как входных, так и выходных данных. Предположим, сеть обучается распознаванию букв на изображениях и имеет один числовой выход - номер буквы в алфавите. В этом случае сеть получит ложное представление о том, что буквы с номерами 1 и 2 более похожи, чем буквы с номерами 1 и 3, что, в общем, неверно. Для того, чтобы избежать такой ситуации, используют топологию сети с большим числом выходов, когда каждый выход имеет свой смысл. Чем больше выходов в сети, тем большее расстояние между классами и тем сложнее их спутать.

Выбор топологии сети. Выбирать тип сети следует исходя из постановки задачи и имеющихся данных для обучения. Для обучения с учителем требуется наличие для каждого элемента выборки «экспертной» оценки. Иногда получение такой оценки для большого массива данных просто невозможно. В этих случаях естественным выбором является сеть, обучающаяся без учителя, например, самоорганизующаяся карта Кохонена или нейронная сеть Хопфилда. При решении других задач, таких как прогнозирование временных рядов, экспертная оценка уже содержится в исходных данных и может быть выделена при их обработке. В этом случае можно использовать многослойный перцептрон или сеть Ворда.

Экспериментальный подбор характеристик сети. После выбора общей структуры нужно экспериментально подобрать параметры сети. Для сетей, подобных перцептрону, это будет число слоев, число блоков в скрытых слоях (для сетей Ворда), наличие или отсутствие обходных соединений, передаточные функции нейронов. При выборе количества слоев и нейронов в них следует исходить из того, что способности сети к обобщению тем выше, чем больше суммарное число связей между нейронами . С другой стороны, число связей ограничено сверху количеством записей в обучающих данных.

Экспериментальный подбор параметров обучения. После выбора конкретной топологии, необходимо выбрать параметры обучения нейронной сети. Этот этап особенно важен для сетей, обучающихся с учителем. От правильного выбора параметров зависит не только то, насколько быстро ответы сети будут сходиться к правильным ответам. Например, выбор низкой скорости обучения увеличит время схождения, однако иногда позволяет избежать паралича сети. Увеличение момента обучения может привести как к увеличению, так и к уменьшению времени сходимости, в зависимости от формы поверхности ошибки. Исходя из такого противоречивого влияния параметров, можно сделать вывод, что их значения нужно выбирать экспериментально, руководствуясь при этом критерием завершения обучения (например, минимизация ошибки или ограничение по времени обучения).

Собственно обучение сети. В процессе обучения сеть в определенном порядке просматривает обучающую выборку. Порядок просмотра может быть последовательным, случайным и т. д. Некоторые сети, обучающиеся без учителя, например, сети Хопфилда просматривают выборку только один раз. Другие, например, сети Кохонена, а также сети, обучающиеся с учителем, просматривают выборку множество раз, при этом один полный проход по выборке называется эпохой обучения . При обучении с учителем набор исходных данных делят на две части - собственно обучающую выборку и тестовые данные; принцип разделения может быть произвольным. Обучающие данные подаются сети для обучения, а проверочные используются для расчета ошибки сети (проверочные данные никогда для обучения сети не применяются). Таким образом, если на проверочных данных ошибка уменьшается, то сеть действительно выполняет обобщение. Если ошибка на обучающих данных продолжает уменьшаться, а ошибка на тестовых данных увеличивается, значит, сеть перестала выполнять обобщение и просто «запоминает» обучающие данные. Это явление называется переобучением сети или оверфиттингом. В таких случаях обучение обычно прекращают. В процессе обучения могут проявиться другие проблемы, такие как паралич или попадание сети в локальный минимум поверхности ошибок. Невозможно заранее предсказать проявление той или иной проблемы, равно как и дать однозначные рекомендации к их разрешению.

Проверка адекватности обучения. Даже в случае успешного, на первый взгляд, обучения сеть не всегда обучается именно тому, чего от неё хотел создатель. Известен случай, когда сеть обучалась распознаванию изображений танков по фотографиям, однако позднее выяснилось, что все танки были сфотографированы на

одном и том же фоне. В результате сеть «научилась» распознавать этот тип ландшафта, вместо того, чтобы «научиться» распознавать танки . Таким образом, сеть «понимает» не то, что от неё требовалось, а то, что проще всего обобщить.

Классификация по типу входной информации

Аналоговые нейронные сети (используют информацию в форме действительных чисел);

Двоичные нейронные сети (оперируют с информацией, представленной в двоичном виде).

Классификация по характеру обучения

Обучение с учителем - выходное пространство решений нейронной сети известно;

Обучение без учителя - нейронная сеть формирует выходное пространство решений только на основе входных воздействий. Такие сети называют самоорганизующимися;

Обучение с подкреплением - система назначения штрафов и поощрений от среды.

Классификация по характеру настройки синапсов

Сети с фиксированными связями (весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи, при этом: , где W - весовые коэффициенты сети);

сети с динамическими связями (для них в процессе обучения происходит настройка синаптических связей, то есть , где W - весовые коэффициенты сети).

Классификация по времени передачи сигнала

В ряде нейронных сетей активирующая функция может зависеть не только от весовых коэффициентов связей w ij , но и от времени передачи импульса (сигнала) по каналам связи τ ij . По этому в общем виде активирующая (передающая) функция связи c ij от элемента u i к элементу u j имеет вид: . Тогдасинхронной сетью называют такую сеть у которой время передачи τ ij каждой связи равна либо нулю, либо фиксированной постоянной τ. Асинхронной называют такую сеть у которой время передачи τ ij для каждой связи между элементами u i и u j свое, но тоже постоянное.

Классификация по характеру связей

Сети прямого распространения (Feedforward)

Все связи направлены строго от входных нейронов к выходным. Примерами таких сетей являются перцептрон Розенблатта, многослойный перцептрон, сети Ворда.

Рекуррентные нейронные сети

Сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя (обратная связь). Рекуррентная сеть сеть Хопфилда «фильтрует» входные данные, возвращаясь к устойчивому состоянию и, таким образом, позволяет решать задачи компрессии данных и построения ассоциативной памяти . Частным случаем рекуррентных сетей является двунаправленные сети. В таких сетях между слоями существуют связи как в направлении от входного слоя к выходному, так и в обратном. Классическим примером является Нейронная сеть Коско.

Радиально-базисные функции

Искусственные нейронные сети, использующие в качестве активационных функций радиально-базисные (такие сети сокращённо называются RBF-сетями). Общий вид радиально-базисной функции:

, например,

где x - вектор входных сигналов нейрона, σ - ширина окна функции, φ(y ) - убывающая функция (чаще всего, равная нулю вне некоторого отрезка).

Радиально-базисная сеть характеризуется тремя особенностями:

Единственный скрытый слой

Только нейроны скрытого слоя имеют нелинейную активационную функцию

Синаптические веса связей входного и скрытого слоев равны единице

Про процедуру обучения - см. литературу

Самоорганизующиеся карты. Такие сети представляют собой соревновательную нейронную сеть с обучением

без учителя, выполняющую задачу визуализации и

кластеризации. Является методом проецирования многомерного пространства в пространство с более низкой размерностью (чаще всего, двумерное), применяется также для решения задач моделирования, прогнозирования и др. Является одной из версий нейронных сетей Кохонена. Самоорганизующиеся карты Кохонена служат, в первую очередь, для визуализации и первоначального («разведывательного») анализа данных.

Сигнал в сеть Кохонена поступает сразу на все нейроны, веса соответствующих синапсов интерпретируются как координаты положения узла, и выходной сигнал формируется по принципу «победитель забирает всё» - то есть ненулевой выходной сигнал имеет нейрон, ближайший (в смысле весов синапсов) к подаваемому на вход объекту. В процессе обучения веса синапсов настраиваются таким образом, чтобы узлы решетки «располагались» в местах локальных сгущений данных, то есть описывали кластерную структуру облака данных, с другой стороны, связи между нейронами соответствуют отношениям соседства между соответствующими кластерами в пространстве признаков.

Удобно рассматривать такие карты как двумерные сетки узлов, размещенных в многомерном пространстве. Изначально самоорганизующаяся карта представляет из себя сетку из узлов, соединенный между собой связями. Кохонен рассматривал два варианта соединения узлов - в прямоугольную и гексагональную сетку - отличие состоит в том, что в прямоугольной сетке каждый узел соединен с 4-мя соседними, а в гексагональной - с 6-ю ближайщими узлами. Для двух таких сеток процесс построения сети Кохонена отличается лишь в том месте, где перебираются ближайшие к данному узлу соседи.

Начальное вложение сетки в пространство данных выбирается произвольным образом. В авторском пакете SOM_PAK предлагаются варианты случайного начального расположения узлов в пространстве и вариант расположения узлов в плоскости. После этого узлы начинают перемещаться в пространстве согласно следующему алгоритму:

Случайным образом выбирается точка данных x .

Определяется ближайший к x узел карты (BMU - Best Matching Unit).

Этот узел перемещается на заданный шаг по направлению к x. Однако, он перемещается не один, а увлекает за собой определенное количество ближайших узлов из некоторой окрестности на карте. Из всех двигающихся узлов наиболее сильно смещается центральный - ближайший к точке данных - узел, а остальные испытывают тем меньшие смещения, чем дальше они от BMU. В настройке карты различают два этапа - этап грубой (ordering) и этап тонкой (fine-tuning) настройки. На первом этапе выбираются большие значения окрестностей и движение узлов носит коллективный характер - в результате карта «расправляется» и грубым образом отражает структуру данных; на этапе тонкой настройки радиус окрестности равен 1-2 и настраиваются уже индивидуальные положения узлов. Кроме этого, величина смещения равномерно затухает со временем, то есть она велика в начале каждого из этапов обучения и близка к нулю в конце.

Алгоритм повторяется определенное число эпох (понятно, что число шагов может сильно изменяться в зависимости от задачи).

Известные типы сетей: Персептрон Розенблатта;Многослойный перцептрон;Сеть Джордана;Сеть Элмана;Сеть Хэмминга;Сеть Ворда;Сеть Хопфилда;Сеть Кохонена;Когнитрон;Неокогнитрон;Хаотическая нейронная сеть;Осцилляторная нейронная сеть;Сеть встречного распространения;Сеть радиальных базисных функций (RBF-сеть);Сеть обобщенной регрессии;Вероятностная сеть;Сиамская нейронная сеть;Сети адаптивного резонанса.

Алгоритмы обучения нейронных сетей.

Обратное распространение

Быстрое распространение

Метод сопряженных градиентов

Алгоритм Левенберга-Маркара

Квази-ньютоновский алгоритм

Дельта-дельта с чертой

Алгоритм Кохонена

ОВК (обучающийся векторный квантователь)

Псевдообратных метод (сингулярное разложение)

Метод К-средних

Алгоритмы задания отклонений

Обучить нейронную сеть - значит, сообщить ей, чего мы

от нее добиваемся. Этот процесс очень похож на обучение ребенка алфавиту. Показав ребенку изображение буквы "А", мы спрашиваем его: "Какая это буква?" Если ответ неверен, мы сообщаем ребенку тот ответ, который мы хотели бы от него получить: "Это буква А". Ребенок запоминает этот пример вместе с верным ответом, то есть в его памяти происходят некоторые изменения в нужном направлении. Мы будем повторять процесс предъявления букв снова и снова до тех пор, когда все 33 буквы будут твердо запомнены. Такой процесс называют "обучение с учителем".

При обучении нейронной сети мы действуем совершенно аналогично. У нас имеется некоторая база данных, содержащая примеры (набор рукописных изображений букв). Предъявляя изображение буквы "А" на вход нейронной сети, мы получаем от нее некоторый ответ, не обязательно верный. Нам известен и верный (желаемый) ответ - в данном случае нам хотелось бы, чтобы на выходе нейронной сети с меткой "А" уровень сигнала был максимален. Обычно в качестве желаемого выхода в задаче классификации берут набор (1, 0, 0, ...), где 1 стоит на выходе с меткой "А", а 0 - на всех остальных выходах. Вычисляя разность между желаемым ответом и реальным ответом сети, мы получаем 33 числа - вектор ошибки . Алгоритм обратного распространения ошибки - это набор формул, который позволяет по вектору ошибки вычислить требуемые поправки для весов нейронной сети. Одну и ту же букву (а также различные изображения одной и той же буквы) мы можем предъявлять нейронной сети много раз. В этом смысле обучение скорее напоминает повторение упражнений в спорте - тренировку.

Оказывается, что после многократного предъявления примеров веса нейронной сети стабилизируются, причем нейронная сеть дает правильные ответы на все (или почти все) примеры из базы данных. В таком случае говорят, что "нейронная сеть выучила все примеры", "нейронная сеть обучена", или "нейронная сеть натренирована". В программных реализациях можно видеть, что в процессе обучения величина ошибки (сумма квадратов ошибок по всем выходам) постепенно уменьшается. Когда величина ошибки достигает нуля или приемлемого малого уровня, тренировку останавливают, а полученную нейронную сеть считают натренированной и готовой к применению на новых данных.

Важно отметить, что вся информация, которую нейронная сеть имеет о задаче, содержится в наборе примеров. Поэтому качество обучения нейронной сети напрямую зависит от количества примеров в обучающей выборке, а также от того, насколько полно эти примеры описывают данную задачу. Так, например, бессмысленно использовать нейронную сеть для предсказания финансового кризиса, если в обучающей выборке кризисов не представлено. Считается, что для полноценной тренировки нейронной сети требуется хотя бы несколько десятков (а лучше сотен) примеров.

Повторим еще раз, что обучение нейронных сетей - сложный и наукоемкий процесс. Алгоритмы обучения нейронных сетей имеют различные параметры и настройки, для управления которыми требуется понимание их влияния.

Применение нейронной сети

После того, как нейронная сеть обучена, мы можем применять ее для решения полезных задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно действовать и в тех ситуациях, в которых он не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Так же и нейронная сеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные. Например, мы можем нарисовать букву "А" другим почерком, а затем предложить нашей нейронной сети классифицировать новое изображение. Веса обученной нейронной сети хранят достаточно много информации о сходстве и различиях букв, поэтому можно рассчитывать на правильный ответ и для нового варианта изображения.

Применение нейронных сетей для задач распознавания образов.

Задача распознавания рукописных букв

Дано: растровое черно-белое изображение буквы размером 30x30 пикселов

Надо: определить, какая это буква (в алфавите 33 буквы)

Формулировка для нейронной сети:

Дано: входной вектор из 900 двоичных символов (900=30x30)

Надо: построить нейронную сеть с 900 входами и 33

выходами, которые помечены буквами. Если на входе нейронной сети изображение буквы "А", то максимальное значение выходного сигнала достигается на выходе "А". Аналогично нейронная сеть работает для всех 33 букв.

Поясним, зачем требуется выбирать выход нейронной сети с максимальным уровнем сигнала. Дело в том, что уровень выходного сигнала, как правило, может принимать любые значения из какого-то отрезка. Однако, в данной задаче нас интересует не аналоговый ответ, а всего лишь номер категории (номер буквы в алфавите). Поэтому используется следующий подход - каждой категории сопоставляется свой выход, а ответом нейронной сети считается та категория, на чьем выходе уровень сигнала максимален. В определенном смысле уровень сигнала на выходе "А" - это достоверность того, что на вход нейронной сети была подана рукописная буква "A". Задачи, в которых нужно отнести входные данные к одной из известных категорий, называются задачами классификации . Изложенный подход - стандартный способ классификации с помощью нейронных сетей.

Как построить нейронную сеть. Теперь, когда стало ясно, что именно мы хотим построить, мы можем переходить к вопросу "как строить такую нейронную сеть". Этот вопрос решается в два этапа:

Выбор типа (архитектуры) нейронной сети.

Подбор весов (обучение) нейронной сети.

На первом этапе следует выбрать следующее:

какие нейроны мы хотим использовать (число входов, передаточные функции);

каким образом следует соединить их между собой;

что взять в качестве входов и выходов нейронной сети.

Эта задача на первый взгляд кажется необозримой, но, к счастью, нам необязательно придумывать нейронную сеть "с нуля" - существует несколько десятков различных нейросетевых архитектур, причем эффективность многих из них доказана математически. Наиболее популярные и изученные архитектуры - это многослойный перцептрон, нейронная сеть с общей регрессией, нейронные сети Кохонена и другие.

На втором этапе нам следует "обучить" выбранную нейронную сеть, то есть подобрать такие значения ее весов, чтобы она работала нужным образом. Необученная нейронная сеть подобна ребенку - ее можно научить чему угодно. В используемых на практике нейронных сетях количество весов может составлять несколько десятков тысяч, поэтому обучение - действительно сложный процесс. Для многих архитектур разработаны специальные алгоритмы обучения, которые позволяют настроить веса нейронной сети определенным образом. Наиболее популярный из этих алгоритмов - метод обратного распространения ошибки (Error Back Propagation), используемый, например, для обучения перцептрона.

К задачам, успешно решаемым НС на данном этапе их развития относятся:

распознавание зрительных, слуховых образов; огромная область применения: от распознавания текста и целей на экране радара до систем голосового управления;

ассоциативный поиск информации и создание ассоциативных моделей; синтез речи; формирование естественного языка;

формирование моделей и различных нелинейных и трудно описываемых математически систем, прогнозирование развития этих систем во времени:

применение на производстве; прогнозирование развития циклонов и других природных процессов, прогнозирование изменений курсов валют и других финансовых процессов;

системы управления и регулирования с предсказанием; управление роботами, другими сложными устройствами

разнообразные конечные автоматы: системы массового обслуживания и коммутации, телекоммуникационные системы;

принятие решений и диагностика, исключающие логический вывод; особенно в областях, где

отсутствуют четкие математические модели: в медицине, криминалистике, финансовой сфере;

Хотя почти для всех перечисленных задач существуют эффективные математические методы решения и несмотря на то, что НС проигрывают специализированным методам для конкретных задач, благодаря универсальности и перспективности для решения глобальных задач, например, построения ИИ и моделирования процесса мышления, они являются важным направлением исследования, требующим тщательного изучения.

Искусственным нейроном называется простой элемент, сначала вычисляющий взвешенную сумму V входных величин xi:

Здесь N – размерность пространства входных сигналов. Затем полученная сумма сравнивается с пороговой величиной W0, вслед за чем вступает в действие нелинейная функция активации f. Коэффициенты Wi во взвешенной сумме обычно называют синаптическими коэффициентами или весами. Саму же взвешенную сумму V мы будем называть потенциалом нейрона i . Выходной сигнал тогда имеет вид f(V). Величину порогового барьера можно рассматривать как еще один весовой коэффициент при постоянном входном сигнале. В этом случае мы говорим о расширенном входном пространстве : нейрон с N-мерным входом имеет N+1 весовой коэффициент. Если ввести в уравнение пороговую величину W0, то оно перепишется так:

В зависимости от способа преобразования сигнала и характера активации возникают различные виды нейронных структур. Существуют детерминированные нейроны , когда активизирующая функция однозначно вычисляет выход по входу, и вероятностные нейроны , состояние которых в момент t есть случайная функция потенциала и состояния в момент t-1. Рассмотрим детерминированные нейроны.

Структура нейронной сети

Используется 3-слойная нейронная сеть, структура которой приведена на рис. 2.

Рис. 2. Структура примененной нейронной сети (n – число распознаваемых букв)

Третий слой образуют выходные нейроны. В нейронной сети выбранной структуры каждый элемент младшего слоя передает свой выходной сигнал на входы всех элементов следующего слоя. Число элементов в первом и втором слоях нейронной сети может варьироваться. В частности, в разбираемом примере второй слой содержит 8, а третий – 24 нейрона.

Функции активации В искусственных нейронах могут быть различные функции активации, но и в используемых мной программах, и в известной литературе указаны только следующие виды функций: Линейная: выходной сигнал нейрона равен его потенциалу, пороговая: нейрон выбирает решение из двух вариантов: активен / неактивен, Многопороговая: выходной сигнал может принимать одно из q значений, определяемых (q-1) порогом внутри предельных значений. Сигмоидная: рассматриваются два вида сигмоидных функций:

с выходными значениями в промежутке и

с выходными значениями в промежутке [-1,1]. Коэффициент b определяет крутизну сигмоида. Поскольку сигмоидная функция является гладким отображением бесконечной функции на промежутке (-1,1), то крутизну можно учесть через величины весов и порогов, и без ограничения общности можно полагать ее равной единице. Графические изображения простейшего нейрона и виды функций с их графиками приведены на рис. 2.
РИС.2. Пример простейшего нейрона в виде математической модели

Типы архитектур нейросетей

Из точек на плоскости и соединений между ними можно построить множество графических фигур, называемых графами. Если каждую точку представить себе как один нейрон, а соединения между точками – как дендриты и синапсы, то мы получим нейронную сеть. Но не всякое соединение нейронов будет работоспособно или вообще целесообразно. Поэтому на сегодняшний день существует только несколько работающих и реализованных программно архитектур нейросетей. Я только вкратце опишу их устройство и классы решаемых ими задач. По архитектуре связей нейросети могут быть сгруппированы в два класса: сети прямого распространения , в которых связи не имеют петель (см. рис. 3 ), и сети рекуррентного типа , в которых возможны обратные связи(см. рис. 4 )

РИС.3. Нейросети прямого распространения РИС.4. Нейросети рекурентного типа

Сети прямого распространения подразделяются на однослойные перцепротроны (сети) и многослойные перцептроны (сети). Название перцептрона для нейросетей придумал американский нейрофизиолог Ф. Розенблатт, придумавший в 1957 году первый нейропроцессорный элемент (НПЭ) , то есть нейросеть . Он же доказал сходимость области решений для перцептрона при его обучении. Сразу после этого началось бурное исследование в этой области и был создан самый первый нейрокомпьютер Mark I. Многослойные сети отличаются тем, что между входными и выходными данными располагаются несколько так называемых скрытых слоев нейронов, добавляющих больше нелинейных связей в модель. Рассмотрим устройство простейшей многослойной нейросети. Любая нейронная сеть состоит из входного слоя и выходного слоя . Соответственно подаются независимые и зависимые переменные. Входные данные преобразуются нейронами сети и сравниваются с выходом. Если отклонение больше заданного, то специальным образом изменяются веса связей нейронов между собой и пороговые значения нейронов. Снова происходит процесс вычислений выходного значения и его сравнение с эталоном. Если отклонения меньше заданной погрешности, то процесс обучения прекращается. Помимо входного и выходного слоев в многослойной сети существуют так называемые скрытые слои . Они представляют собой нейроны, которые не имеют непосредственных входов исходных данных, а связаны только с выходами входного слоя и с входом выходного слоя. Таким образом, скрытые слои дополнительно преобразуют информацию и добавляют нелинейности в модели. Чтобы лучше понять устройство многослойного перцептрона смотрите рис. 5.

РИС.5. Многослойный перцептрон

Если однослойная нейросеть очень хорошо справляется с задачами классификации, так как выходной слой нейронов сравнивает полученные от предыдущего слоя значения с порогом и выдает значение либо ноль, то есть меньше порогового значения, либо единицу - больше порогового (для случая пороговой внутренней функции нейрона), и не способен решать большинство практических задач(что было доказано Минским и Пейпертом), то многослойный перцептрон с сигмоидными решающими функциями способен аппроксимировать любую функциональную зависимость (это было доказано в виде теоремы). Но при этом не известно ни нужное число слоев, ни нужное количество скрытых нейронов, ни необходимое для обучения сети время. Эти проблемы до сих пор стоят перед исследователями и разработчиками нейросетей. Лично мне кажется, что весь энтузиазм в применении нейросетей строится именно на доказательстве этой теоремы. Класс рекуррентных нейросетей гораздо обширнее, да и сами сети сложнее по своему устройству. Поведение рекуррентных сетей описывается дифференциальными или разностными уравнениями, как правило, первого порядка. Это гораздо расширяет области применения нейросетей и способы их обучения. Сеть организована так, что каждый нейрон получает входную информацию от других нейронов, возможно, и от самого себя, и от окружающей среды. Этот тип сетей имеет важное значение, так как с их помощью можно моделировать нелинейные динамические системы. Среди рекуррентных сетей можно выделить сети Хопфилда и сети Кохонена . С помощью сетей Хопфилда можно обрабатывать неупорядоченные (рукописные буквы), упорядоченные во времени (временные ряды) или пространстве (графики) образцы. Рекуррентная нейросеть простейшего вида была введена Хопфилдом и построена она из N нейронов, связанных каждый с каждым кроме самого себя, причем все нейроны являются выходными. Нейросеть Хопфилда можно использовать в качестве ассоциативной памяти. Архитектура сети Хопфилда изображена на рис. 6.

РИС.6. Архитектура сети Хопфилда

Сеть Кохонена еще называют "самоорганизующейся картой признаков". Сеть такого типа рассчитана на самостоятельное обучение во время обучения сообщать ей правильные ответы необязательно. В процессе обучения на вход сети подаются различные образцы. Сеть улавливает особенности их структуры и разделяет образцы на кластеры, а уже обученная сеть относит каждый вновь поступающий пример к одному из кластеров, руководствуясь некоторым критерием "близости". Сеть состоит из одного входного и одного выходного слоя. Количество элементов в выходном слое непосредственно определяет, сколько различных кластеров сеть сможет распознать. Каждый из выходных элементов получает на вход весь входной вектор. Как и во всякой нейронной сети, каждой связи приписан некоторый синаптический вес. В большинстве случаев каждый выходной элемент соединен также со своими соседями. Эти внутрислойные связи играют важную роль в процессе обучения, так как корректировка весов происходит только в окрестности того элемента, который наилучшим образом откликается на очередной вход. Выходные элементы соревнуются между собой за право вступить в действи и "получить урок". Выигрывает тот из них, чей вектор весов окажется ближе всех к входному вектору.

Введение

Искусственные нейронные сети (ИНС) строятся по принципам организации и функционирования их биологических аналогов. Они способны решать широкий круг задач распознавания образов, идентификации, прогнозирования, оптимизации, управления сложными объектами. Дальнейшее повышение производительности компьютеров все в большой мере связывают с ИНС, в частности, с нейрокомпьютерами (НК), основу которых составляет искусственная нейронная сеть.

Термин «нейронные сети» сформировался к середине 50-х годов XX века. Основные результаты в этой области связаны с именами У. Маккалоха, Д. Хебба, Ф. Розенблатта, М. Минского, Дж. Хопфилда. Приведем краткую историческую справку .

1943 г. У. Маккалох (W. McCulloch) и У. Питтс (W. Pitts) предложили модель нейрона и сформулировали основные положения теории функционирования головного мозга.
1949 г. Д. Хебб (D. Hebb) высказал идеи о характере соединений нейронов мозга и их взаимодействии (клеточные ансамбли, синаптическая пластичность). Впервые предложил правила обучения нейронной сети.
1957 г. Ф. Розенблатт (F. Rosenblatt) разработал принципы организации и функционирования персептронов, предложил вариант технической реализации первого в мире нейрокомпьютера Mark.
1959 г. Д. Хьюбел (D, Hubel) и Т. Визель (Т. Wiesel) показали распределенный и параллельный характер хранения и обработки информации в биологических нейронных сетях.
1960-1968 гг. Активные исследования в области искусственных нейронных сетей, например, АДАЛИНА и МАДАЛИНА В. Уидроу (W. Widrow) (1960-1962 гг.), ассоциативные матрицы К. Штайнбуха (К. Steinbuch) (1961 г.).
1969 г. Публикация книги М. Минского (М. Minsky) и С. Пей-перта (S. Papert) «Персептроны», в которой доказывается принципиальная ограниченность возможностей персептронов. Угасание интереса к искусственным нейронным сетям.
1970-1976 гг. Активные разработки в области персептронов в СССР (основные заказчики - военные ведомства).
Конец 1970-х гг. Возобновление интереса к искусственным нейронным сетям как следствие накопления новых знаний о деятельности мозга, а также значительного прогресса в области микроэлектроники и компьютерной техники.
1982-1985 гг. Дж. Хопфилд (J. Hopfield) предложил семейство оптимизирующих нейронных сетей, моделирующих ассоциативную память.
1985 г. Появление первых коммерческих нейрокомпьютеров, например, Mark III фирмы TRW (США).
1987 г. Начало широкомасштабного финансирования разработок в области ИНС и НК в США, Японии и Западной Европе (японская программа «Human Frontiers» и европейская программа «Basic Research in Adaptive Intelligence and Neurocomputing»).
1989 г. Разработки и исследования в области ИНС и НК ведутся практически всеми крупными электротехническими фирмами. Нейрокомпьютеры становятся одним из самых динамичных секторов рынка (за два года объем продаж вырос в пять раз). Агентством DARPA (Defence Advanced Research Projects Agency) министерства обороны США начато финансирование программы по созданию сверхбыстродействующих образцов НК для разнообразных применений.
1990 г. Активизация советских исследовательских организаций в области ИНС и НК (Институт кибернетики им. Глушкова в Киеве, Институт многопроцессорных вычислительных систем в Таганроге, Институт нейрокибернетики в Ростове-на-Дону). Общее число фирм, специализирующихся в области ИНС и НК, достигает трехсот.
1991 г. Годовой объем продаж на рынке ИНС и НК приблизился к 140 млн. долларам. Создаются центры нейрокомпьютеров в Москве, Киеве, Минске, Новосибирске, С.-Петербурге.
1992 г. Работы в области ИНС находятся стадии интенсивного развития. Ежегодно проводится десятки международных конференций и форумов по нейронным сетям, число специализированных периодических научных изданий по указанной тематике достигло двух десятков наименований.
1996 г. Число международных конференций по ИНС и НК достигло ста.
1997 г. Годовой объем продаж на рынке ИНС и НК превысил 2 млрд. долларов, а ежегодный прирост составил 50%.
2000 г. Переход на субмикронные и нанотехнологии, а также успехи молекулярной и биомолекулярной технологии приводят к принципиально новым архитектурным и технологическим решениям по созданию нейрокомпьютеров.

Глубокое изучение ИНС требует знания нейрофизиологии, науки о познании, психологии, физики (статистической механики), теории управления, теории вычислений, проблем искусственного интеллекта, статистики/математики, распознавания образов, компьютерного зрения, параллельных вычислений и аппаратных средств (цифровых и аналоговых). С другой стороны, ИНС также стимулируют эти дисциплины, обеспечивая их новыми инструментами и представлениями. Этот симбиоз жизненно необходим для исследования нейронных сетей.

Представим некоторые проблемы, решаемые искусственными нейронными сетями

Классификация образов . Задача состоит в указании принадлежности входного образа, представленного вектором признаков, одному или нескольким предварительно определенным классам. К известным приложениям относятся распознавание букв, распознавание речи, классификация сигнала электрокардиограммы, классификация клеток крови.

Кластеризация/категоризация . При решении задачи кластеризации, которая известна также как классификация образов без учителя, отсутствует обучающая выборка с метками классов. Алгоритм кластеризации основан на подобии образов и размещает близкие образы в один кластер. Известны случаи применения кластеризации для извлечения знаний, сжатия данных и исследования свойств данных.

Аппроксимация функций. Предположим, что имеется обучающая выборка ((X 1, Y 2), (X 2, Y 2),..., (X N, Y N)), которая генерируется неизвестной функцией, искаженной шумом. Задача аппроксимации состоит в нахождении оценки этой функции.

Предсказание/прогноз . Пусть заданы N дискретных отсчетов { y (t 1), y (t 2),..., y(t n)} в последовательные моменты времени t 1, t 2,..., t n. Задача состоит в предсказании значения y(t n +1) в момент t n +1. Прогноз имеют значительное влияние на принятие решений в бизнесе, науке и технике.

Оптимизация . Многочисленные проблемы в математике, статистике, технике, науке, медицине и экономике могут рассматриваться как проблемы оптимизации. Задачей оптимизации является нахождение решения, которое удовлетворяет системе ограничений и максимизирует или минимизирует целевую функцию.

Память, адресуемая по содержанию. В модели вычислений фон Неймана обращение к памяти доступно только посредством адреса, который не зависит от содержания памяти. Более того, если допущена ошибка в вычислении адреса, то может быть найдена совершенно иная информация. Память, адресуемая по содержанию, или ассоциативная память, доступна по указанию заданного содержания. Содержимое памяти может быть вызвано даже по частичному или искаженному содержанию. Ассоциативная память чрезвычайно желательна при создании перспективных информационно-вычислительных систем.

Управление . Рассмотрим динамическую систему, заданную совокупностью {u(t), y(t)}, где u(t) является входным управляющим воздействием, a y(t) - выходом системы в момент времени f. В системах управления с эталонной моделью целью управления является расчет такого входного воздействия u(f), при котором система следует по желаемой траектории, диктуемой эталонной моделью.

Каким образом нейронная сеть решает все эти, часто неформализуемые или трудно формализуемые задачи? Как известно, для решения таких задач традиционно применяются два основных подхода. Первый, основанный на правилах (rule-based), характерен для экспертных систем. Он базируется на описании предметной области в виде набора правил (аксиом) «если..., то...» и правил вывода. Искомое знание представляется в этом случае теоремой, истинность которой доказывается посредством построения цепочки вывода. При этом подходе, однако, необходимо заранее знать весь набор закономерностей, описывающих предметную область. При использовании другого подхода, основанного на примерах (case-based), надо лишь иметь достаточное количество примеров для настройки адаптивной системы с заданной степенью достоверности. Нейронные сети представляют собой классический пример такого подхода.

ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ

Под нейронными сетями подразумеваются вычислительные структуры, которые моделируют простые биологические процессы, обычно ассоциируемые с процессами человеческого мозга. Они представляют собой распределенные и параллельные системы, способные к адаптивному обучению путем анализа положительных и отрицательных воздействий. Элементарным преобразователем в данных сетях является искусственный нейрон или просто нейрон, названный так по аналогии с биологическим прототипом.

Биологический нейрон

Нервная система и мозг человека состоят из нейронов, соединенных между собой нервными волокнами. Нервные волокна способны передавать электрические импульсы между нейронами. Все процессы передачи раздражений от кожи, ушей и глаз к мозгу, процессы мышления и управления действиями - все это реализовано в живом организме как передача электрических импульсов между нейронами.

Нейрон (нервная клетка) является особой биологической клеткой, которая обрабатывает информацию (рис. 1.). Он состоит из тела (cell body), или сомы (soma), и отростков нервных волокон двух типов - дендритов (dendrites), по которым принимаются импульсы, и единственного аксона (ахо n), по которому нейрон может передавать импульс. Тело нейрона включает ядро (nucleus), которое содержит информацию о наследственных свойствах, и плазму , обладающую молекулярными средствами для производства необходимых нейрону материалов. Нейрон получает сигналы (импульсы) от аксонов других нейронов через дендриты (приемники) и передает сигналы, сгенерированные телом клетки, вдоль своего аксона (передатчика), который в конце разветвляется на волокна (strands). На окончаниях этих волокон находятся специальные образования - синапсы (synapses), которые влияют на величину импульсов.

Рис. 1. Взаимосвязь биологических нейронов

Синапс является элементарной структурой и функциональным узлом между двумя нейронами (волокно аксона одного нейрона и дендрит другого). Когда импульс достигает синаптического окончания, высвобождаются химические вещества, называемые нейротрансмиттерами. Нейротрансмиттеры диффундируют через синаптическую щель, возбуждая или затормаживая, в зависимости от типа синапса, способность нейрона-приемника генерировать электрические импульсы. Результативность передачи импульса синапсом может настраиваться проходящими через него сигналами так, что синапсы могут обучаться в зависимости от активности процессов, в которых они участвуют. Эта зависимость от предыстории действует как память, которая, возможно, ответственна за память человека. Важно отметить, что веса синапсов могут изменяться со временем, а значит, меняется и поведение соответствующих нейронов.

Кора головного мозга человека содержит около 1011 нейронов и представляет собой протяженную поверхность толщиной от 2 до 3 мм с площадью около 2200 см 2. Каждый нейрон связан с 103-104 другими нейронами. В целом мозг человека содержит приблизительно от 1014 до 1015 взаимосвязей.

Нейроны взаимодействуют короткими сериями импульсов продолжительностью, как правило, несколько миллисекунд. Сообщение передается посредством частотно-импульсной модуляции. Частота может изменяться от нескольких единиц до сотен герц, что в миллион раз медленнее, чем быстродействующие переключательные электронные схемы. Тем не менее сложные задачи распознавания человек решает за несколько сотен миллисекунд. Эти решения контролируются сетью нейронов, которые имеют скорость выполнения операций всего несколько миллисекунд. Это означает, что вычисления требуют не более 100 последовательных стадий. Другими словами, для таких сложных задач мозг «запускает» параллельные программы, содержащие около 100 шагов. Рассуждая аналогичным образом, можно обнаружить, что количество информации, посылаемое от одного нейрона другому, должно быть очень малым (несколько бит). Отсюда следует, что основная информация не передается непосредственно, а захватывается и распределяется в связях между нейронами.

Структура и свойства искусственного нейрона

Нейрон является составной частью нейронной сети. На рис. 2 показана его структура. Он состоит из элементов трех типов: умножителей (синапсов), сумматора и нелинейного преобразователя. Синапсы осуществляют связь между нейронами, умножают входной сигнал на число, характеризующее силу связи, (вес синапса). Сумматор выполняет сложение сигналов, поступающих по синаптическим связям от других нейронов, и внешних входных сигналов. Нелинейный преобразователь реализует нелинейную функцию одного аргумента - выхода сумматора. Эта функция называется функцией активации или передаточной функцией нейрона.

Рис. 2. Структура искусственного нейрона

Нейрон в целом реализует скалярную функцию векторного аргумента. Математическая модель нейрона:

где w i, - вес (weight) синапса, i = 1...n; b - значение смещения (bias); s - результат суммирования (sum); x, - компонент входного вектора (входной сигнал), x i = 1... n ; у - выходной сигнал нейрона; n - число входов нейрона; f - нелинейное преобразование (функция активации).

В общем случае входной сигнал, весовые коэффициенты и смещение могут принимать действительные значения, а во многих практических задачах - лишь некоторые фиксированные значения. Выход (у) определяется видом функции активации и может быть как действительным, так и целым.

Синаптические связи с положительными весами называют возбуждающими , с отрицательными весами - тормозящими .

Описанный вычислительный элемент можно считать упрощенной математической моделью биологических нейронов. Чтобы подчеркнуть различие нейронов биологических и искусственных, вторые иногда называют нейроноподобными элементами или формальными нейронами.

На входной сигнал (s) нелинейный преобразователь отвечает выходным сигналом f(s), который представляет собой выход у нейрона. Примеры активационных функций представлены в табл. 1. и на рис. 3.

Таблица 1

Рис. 3. Примеры активационных функций
а - функция единичного скачка; б - линейный порог (гистерезис);
в - сигмоид (логистическая функция); г - сигмоид (гиперболический тангенс)

Одной из наиболее распространенных является нелинейная функция активации с насыщением, так называемая логистическая функция или сигмоид (функция S-образного вида):

Следует отметить, что сигмоидальная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения. Кроме того, она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоид имеет пологий наклон.

Классификация нейронных сетей и их свойства

Нейронная сеть представляет собой совокупность нейроподобных элементов, определенным образом соединенных друг с другом и с внешней средой с помощью связей, определяемых весовыми коэффициентами. В зависимости от функций, выполняемых нейронами в сети, можно выделить три их типа:

входные нейроны , на которые подается вектор, кодирующий входное воздействие или образ внешней среды; в них обычно не осуществляется вычислительных процедур, а информация передается с входа на выход путем изменения их активации;
выходные нейроны , выходные значения которых представляют выходы нейронной сети; преобразования в них осуществляются по выражениям (1.1) и (1.2);
промежуточные нейроны , составляющие основу нейронных сетей, преобразования в которых выполняются также по выражениям (1.1) и (1.2).

В большинстве нейронных моделей тип нейрона связан с его расположением в сети. Если нейрон имеет только выходные связи, то это входной нейрон, если наоборот - выходной нейрон. Однако возможен серий, когда выход топологически внутреннего нейрона рассматривается как Часть выхода сети. В процессе функционирования сети осуществляется преобразование входного вектора в выходной, некоторая переработка информации. Конкретный вид выполняемого сетью преобразования данных обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, а именно топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации, способами обучения сети, наличием или отсутствием конкуренции между нейронами, направлением и способами управления и синхронизации передачи информации между нейронами.

С точки зрения топологии можно выделить три основных типа нейронных сетей:

Полносвязные (рис. 4, а);
многослойные или слоистые (рис. 4, б);
слабосвязные (с локальными связями) (рис. 4, в).

Рис. 4. Архитектуры нейронных сетей:
а - полносвязная сеть, б - многослойная сеть с последовательными связями, в - слабосвязные сети

В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.

В многослойных нейронных сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами. Число нейронов в слое может быть любым и не зависит от количества нейронов в других слоях. В общем случае сеть состоит из Q слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев. Связи от выходов нейронов некоторого слоя q к входам нейронов следующего слоя (q +1) называются последовательными.

В свою очередь, среди многослойных нейронных сетей выделяют следующие типы.

1) Монотонные. Это частный случай слоистых сетей с дополнительными условиями на связи и нейроны. Каждый слой кроме последнего (выходного) разбит на два блока: возбуждающий и тормозящий. Связи между блоками тоже разделяются на тормозящие и возбуждающие. Если от нейронов блока А к нейронам блока В ведут только возбуждающие связи, то это означает, что любой выходной сигнал блока является монотонной неубывающей функцией любого выходного сигнала блока А. Если же эти связи только тормозящие, то любой выходной сигнал блока В является невозрастающей функцией любого выходного сигнала блока А. Для нейронов монотонных сетей необходима монотонная зависимость выходного сигнала нейрона от параметров входных сигналов.

2) Сети без обратных связей. В таких сетях нейроны входного слоя получают входные сигналы, преобразуют их и передают нейронам первого скрытого слоя, и так далее вплоть до выходного, который выдает сигналы для интерпретатора и пользователя. Если не оговорено противное, то каждый выходной сигнал q-гo слоя подастся на вход всех нейронов (q+1)-гo слоя; однако возможен вариант соединения q-гo слоя с произвольным (q+p)-м слоем.

Среди многослойных сетей без обратных связей различают полносвязанные (выход каждого нейрона q-гo слоя связан с входом каждого нейрона (q+1)-гo слоя) и частично полносвязанные. Классическим вариантом слоистых сетей являются полносвязанные сети прямого распространения (рис. 5).

Рис. 5. Многослойная (двухслойная) сеть прямого распространения

3) Сети с обратными связями . В сетях с обратными связями информация с последующих слоев передается на предыдущие. Среди них, в свою очередь, выделяют следующие:

Слоисто-циклические, отличающиеся тем, что слои замкнуты в кольцо: последний слой передает свои выходные сигналы первому; все слои равноправны и могут как получать входные сигналы, так и выдавать выходные;
слоисто-полносвязанные состоят из слоев, каждый из которых представляет собой полносвязную сеть, а сигналы передаются как от слоя к слою, так и внутри слоя; в каждом слое цикл работы распадается на три части: прием сигналов с предыдущего слоя, обмен сигналами внутри слоя, выработка выходного сигнала и передача к последующему слою;
полносвязанно-слоистые, по своей структуре аналогичные слоисто-полносвязанным, но функционирующим по-другому: в них не разделяются фазы обмена внутри слоя и передачи следующему, на каждом такте нейроны всех слоев принимают сигналы от нейронов как своего слоя, так и последующих.

В качестве примера сетей с обратными связями на рис. 6 представлены частично-рекуррентные сети Элмана и Жордана.

Рис. 6. Частично-рекуррентные сети: а - Элмана, б – Жордана

В слабосвязных нейронных сетях нейроны располагаются в узлах прямоугольной или гексагональной решетки. Каждый нейрон связан с четырьмя (окрестность фон Неймана), шестью (окрестность Голея) или восемью (окрестность Мура) своими ближайшими соседями.

Известные нейронные сети можно разделить по типам структур нейронов на гомогенные (однородные) и гетерогенные. Гомогенные сети состоят из нейронов одного типа с единой функцией активации, а в гетерогенную сеть входят нейроны с различными функциями активации.

Существуют бинарные и аналоговые сети. Первые из них оперируют только двоичными сигналами, и выход каждого нейрона может принимать значение либо логического ноля (заторможенное состояние) либо логической единицы (возбужденное состояние).

Еще одна классификация делит нейронные сети на синхронные и асинхронные. В первом случае в каждый момент времени лишь один нейрон меняет свое состояние, во втором - состояние меняется сразу у целой группы нейронов, как правило, у всего слоя. Алгоритмически ход времени в нейронных сетях задается итерационным выполнением однотипных действий над нейронами. Далее будут рассматриваться только синхронные сети.

Сети можно классифицировать также по числу слоев. Теоретически число слоев и число нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированных микросхем, на которых обычно реализуется нейронная сеть. Чем сложнее сеть, тем более сложные задачи она может решать.

Выбор структуры нейронной сети осуществляется в соответствии с особенностями и сложностью задачи. Для решения отдельных типов задач уже существуют оптимальные конфигурации, описанные в приложении. Если же задача не может быть сведена ни к одному из известных типов, приходится решать сложную проблему синтеза новой конфигурации. При этом необходимо руководствоваться следующими основными правилами:

Возможности сети возрастают с увеличением числа нейронов сети, плотности связей между ними и числом слоев;
введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети;
сложность алгоритмов функционирования сети, введение нескольких типов синапсов способствует усилению мощности нейронной сети.

Вопрос о необходимых и достаточных свойствах сети для решения задач того или иного рода представляет собой целое направление нейрокомпьютерной науки. Так как проблема синтеза нейронной сети сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно. В большинстве случаев оптимальный вариант получается на основе интуитивного подбора, хотя в литературе приведены доказательства того, что для любого алгоритма существует нейронная сеть, которая может его реализовать. Остановимся на этом подробнее.

Многие задачи распознавания образов (зрительных, речевых), выполнения функциональных преобразований при обработке сигналов, управления, прогнозирования, идентификации сложных систем, сводятся к следующей математической постановке. Необходимо построить такое отображение X -> У, чтобы на каждый возможный входной сигнал X формировался правильный выходной сигнал У. Отображение задается конечным набором пар (<вход>, <известный выход>). Число этих пар (обучающих примеров) существенно меньше общего числа возможных сочетаний значений входных и выходных сигналов. Совокупность всех обучающих примеров носит название обучающей выборки.

В задачах распознавания образов X - некоторое представление образа (изображение, вектор), У - номер класса, к которому принадлежит входной образ.

В задачах управления X - набор контролируемых параметров управляемого объекта, У - код, определяющий управляющее воздействие, соответствующее текущим значениям контролируемых параметров.

В задачах прогнозирования в качестве входных сигналов используются временные ряды, представляющие значения контролируемых переменных на некотором интервале времени. Выходной сигнал - множество переменных, которое является подмножеством переменных входного сигнала.

При идентификации X и У представляют входные и выходные сигналы системы соответственно.

Вообще говоря, большая часть прикладных задач может быть сведена к реализации некоторого сложного функционального многомерного преобразования.
В результате отображения X -> У необходимо обеспечить формирование правильных выходных сигналов в соответствии:
со всеми примерами обучающей выборки;
со всеми возможными входными сигналами, которые не вошли в обучающую выборку.

Второе требование в значительной степени усложняет задачу формирования обучающей выборки. В общем виде эта задача в настоящее время еще не решена, однако во всех известных случаях может быть найдено частное решение.

Теорема Колмогорова-Арнольда

Построить многомерное отображение X -> У - это значит представить его с помощью математических операций над не более, чем двумя переменными.

Проблема представления функций многих переменных в виде суперпозиции функций меньшего числа переменных восходит 13-й проблеме Гильберта. В результате многолетней научной полемики между А. Н. Колмогоровым и В. И. Арнольдом был получен ряд важных теоретических результатов, опровергающих тезис непредставимости функции многих переменных функциями меньшего числа переменных:

Теорема о возможности представления непрерывных функций нескольких, переменных суперпозициями непрерывных функций меньшего числа переменных (1956 г.);
теорема о представлении любой непрерывной функции трех переменных в виде суммы функций не более двух переменных (1957 г.);
теорема о представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного и сложения (1957 г.).

Работа Хехт-Нильсена

Теорема о представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного и сложения в 1987 году была переложена Хехт-Нильсеном для нейронных сетей.

Теорема Хехт-Нильсена доказывает представимость функции многих переменных достаточно общего вида с помощью двухслойной нейронной сети с прямыми полными связями с n нейронами входного слоя, (2 n +1) нейронами скрытого слоя с заранее известными ограниченными функциями активации (например, сиг-моидальными) и m нейронами выходного слоя с неизвестными функциями активации.

Теорема, таким образом, в неконструктивной форме доказывает решаемость задачи представления функции произвольного вида на нейронной сети и указывает для каждой задачи минимальные числа нейронов сети, необходимых для ее решения.

Следствия из теоремы Колмогорова-Арнольда - Хехт-Нильсена

Следствие 1 . Из теоремы Хехт-Нильсена следует представимость любой многомерной функции нескольких переменных с помощью нейронной сети фиксированной размерности. Неизвестными остаются следующие характеристики функций активации нейронов:

Ограничения области значений (координаты асимптот) сигмоидальных функций активации нейронов скрытого слоя;
наклон сигмоидальных функций активации;
вид функций активации нейронов выходного слоя.

Про функции активации нейронов выходного слоя из теоремы Хехт-Нильсена известно только то, что они представляют собой нелинейные функции общего вида. В одной из работ, продолжающих развитие теории, связанной с рассматриваемой теоремой, доказывается, что функции активации нейронов выходного слоя должны быть монотонно возрастающими. Это утверждение в некоторой степени сужает класс функций, которые могут использоваться при реализации отображения с помощью двухслойной нейронной сети.

На практике требования теоремы Хехт-Нильсена к функциям активации удовлетворяются следующим образом. В нейронных сетях как для первого (скрытого), так и для второго (выходного) слоя используют сигмоидальные передаточные функции с настраиваемыми параметрами. То есть в процессе обучения индивидуально для каждого нейрона задается максимальное и минимальное значение, а также наклон сигмоидальной функции.

Следствие 2. Для любого множества пар (X k, Y k) (где Y k - скаляр) существует двухслойная однородная (с одинаковыми функциями активации) нейронная сеть первого порядка с последовательными связями и с конечным числом нейронов, которая выполняет отображение X -> У, выдавая на каждый входной сигнал X k правильный выходной сигнал У k. Нейроны в такой двухслойной нейронной сети должны иметь сигмоидальные передаточные функции.

К сожалению, эта теорема не конструктивна. В ней не заложена методика определения числа нейронов в сети для некоторой коифетной обучающей выборки.

Для многих задач единичной размерности выходного сигнала недостаточно. Необходимо иметь возможность строить с помощью нейронных сетей функции X -> У, где У имеет произвольную размерность. Следующее утверждение является теоретической основой для построения таких функций на базе однородных нейронных сетей.

Утверждение. Для любого множества пар входных-выходных векторов произвольной размерности {(X k, У k), k = 1... N } существует однородная двухслойная нейронная сеть с последовательными связями, с сигмоидальными передаточными функциями и с конечным числом нейронов, которая для каждого входного вектора X k формирует соответствующий ему выходной вектор Y k.

Таким образом, для представления многомерных функций многих переменных может быть использована однородная двухслойная нейронная сеть с сигмоидальными передаточными функциями.

Для оценки числа нейронов с скрытых слоях однородных нейронных сетей можно воспользоваться формулой для оценки необходимого числа синаптических весов L w в многослойной сети с сигмоидальными передаточными функциями:

mN / (1+log 2N) < L w < m (1+ N/m)(n+m+1)+m (1.5)

где n - размерность входного сигнала, m - размерность выходили сигнала, N - число элементов обучающей выборки.

Оценив необходимое число весов, можно рассчитать число нейронов в скрытых слоях. Например, для двухслойной сети это число составит:

Известны и другие формулы для оценки, например:

2 (n + L + m) < N < 10 (n + L+ m),
N/10 - n - m < L < N/2 - n – m

Иногда целесообразно использовать сети с большим числом слоев. Такие многослойные нейронные сети могут иметь меньшие размерности матриц синаптических весов нейронов одного слоя, чем двухслойные сети, реализующие то же самое отображение. Однако строгой методики построения таких сетей пока нет.

Аналогичная ситуация складывается и с многослойными нейронными сетями, в которых помимо последовательных связей используются и прямые (связи от слоя с номером q к слою с номером (q+p), где р > 1). Нет строгой теории, которая показывала бы возможность и целесообразность построения таких сетей.

Наибольшие проблемы возникают при использовании сетей циклического функционирования. К этой группе относятся многослойные сети с обратными связями (от слоя с номером q к слою с номером (q+p), где р < 0), а также полносвязные сети. Для успешного функционирования таких сетей необходимо соблюдение условий динамической устойчивости, иначе сеть может не сойтись к правильному решению, либо, достигнув на некоторой итерации правильного значения выходного сигнала, после нескольких итераций уйти от этого значения. Проблема динамической устойчивости подробно исследована, пожалуй, лишь для одной модели из рассматриваемой группы - нейронной сети Хопфилда.

Отсутствие строгой теории для перечисленных моделей нейронных сетей не препятствует исследованию возможностей их применения.

Отметим, что отечественному читателю приведенные результаты известны в более фрагментарной форме - в виде так называемой теоремы о полноте.

Теорема о полноте. Любая непрерывная функция на замкнутом ограниченном множестве может быть равномерно приближена функциями, вычисляемыми нейронными сетями, если функция активации нейрона дважды непрерывно дифференцируема и непрерывна.

Таким образом, нейронные сети являются универсальными структурами, позволяющими реализовать любой вычислительный алгоритм.

Лучшие статьи по теме