Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Программы
  • Как включить датчик приближения на андроид. Что такое G-Sensor и для чего он нужен в мобильных устройствах

Как включить датчик приближения на андроид. Что такое G-Sensor и для чего он нужен в мобильных устройствах

Датчики представляют собою разнообразные устройства, состоящие из различных микроэлектромеханических компонентов, которые позволяют получать и считывать различные дополнительные данные. Это позволяет сделать более удобной работу с гаджетом и добавить ему функциональности.

Безусловно, общеизвестным является тот факт, что современные смартфоны напичканы множеством датчиков, но их применение и количество зачастую остается загадкой, потому как производители представляют общественности информацию только о самых основных из них, как, например, датчики приближения, гироскоп или же акселерометр.

Сегодня мы хотим вам рассказать, какие датчики могут быть в смартфоне и зачем они нужны.

Датчик ориентации или ускорения – акселерометр. Это самый обыкновенный вид датчика, который наблюдается чуть ли не в каждой модели смартфонов или планшетов. Необходим он для того, чтобы регистрировать пространственные повороты девайса из портретного положения в положение ландшафтное. Зачастую, конкретно акселерометр называется G-sensor. Обычно, существуют три оси, по которым датчиком регистрируется разница между ускорением самого объекта и гравитационным ускорением.

В последующем, процессор вычисляет значение разницы, анализирует, и направляет информацию в программное обеспечение. Согласно этой информации становится известно, в какой момент и куда поворачивать экран. Исходя из принципа работы, можно вывести главный недостаток датчика ориентации. Если значение ускорения крайне мало или его нет, то он останавливает процесс регистрации пространственного расположения девайса, или же погрешность в регистрировании достаточно высока. Это может оказывать отрицательное влияние на точности управления гаджетом в мобильных играх или в момент управления, к примеру, дроном. В таком случае помощь акселерометру оказывает следующий датчик.

Гироскоп. Необходим также для того, чтобы отмечать пространственное расположение девайса, но при этом свободно может осуществлять регистрацию угла наклона устройства по трем осям даже в том случае, если не происходит движение смартфона. Это повышает точность управления при игре на мобильном телефоне, так как разработчики благодаря гироскопу могут получать данные о том, насколько отклонилось устройство от каких-либо координат, и погрешность в таком случае равна примерно одному-двум градусам.

Датчик геомагнитного анализа. Он может реагировать на магнитные поля нашей планеты. Его еще частенько величают электронным компасом, потому что с его помощью девайс может отображать информацию о положении сторон света. Как пример, если есть геомагнитный датчик, смартфон может обходиться без GPS-модуля, определяя местоположение объекта. Это один из главных датчиков современных смартфонов и прочих устройств.

Зачастую для того, чтобы повысить точность, в смартфон устанавливаются еще датчики, работающие по схожему принципу, но обладающие более простым набором функций. Безусловно, пользователь может при помощи магнитометра выполнять его прямые функции – использовать его как металлоискатель, отыскивать проводку в стенах здания или как компас. В мобильных маркетах необходимо для этого искать нужное программное обеспечение.

Датчик приближения. Предоставляет возможность идентификации объекта и вычисления расстояния до него. В него входит излучатель инфракрасных лучей и их приемное устройство. Если приемное устройство не получает сигнал, это означает, что предмет отсутствует, а когда излучение попадает в приемник, то это свидетельствует о том, что существует предмет, отразивший собою луч. Широкое применение он находит, к примеру, отключая подсветку дисплея, когда смартфон поднесен к уху в момент звонка. Некоторые более прогрессивные варианты могут считывать некоторые жесты и в дальнейшем отвечать на это определенным действием. Порой датчик приближения может использоваться в случаях, когда при закрытии чехла необходимо погасить дисплей.

Датчик света или же датчик освещенности. Благодаря ему устройство может определять уровень освещенности окружающей соежы. Это позволяет автоматически изменять яркость подсветки дисплея. Это достаточно удобная функция – не приходится постоянно изменять уровень яркости экрана вручную. В более дорогих моделях смартфонов порой используется прогрессивная и расширенная версия датчика, которому под силу анализировать уровень интенсивности главных цветов (RGB), чтобы в последующем настроить цвета на дисплее или корректировать баланс белого в процессе фотографирования.

Промежуточный вывод

Если смартфон обладает только акселерометром, это говорит о том, что модель относится к самой бюджетной категории и обладает возможностью поворота экрана. Безусловно, порой производитель не предоставляет всеобъемлющую информацию о датчиках, которые есть в наличии, поэтому следует прочесть некоторые обзоры, где детально анализируется вся «начинка» мобильного устройства.

Если все датчики, что перечислены выше, имеются в смартфоне, а также в электронику устройства входят некоторые из тех, что будут рассмотрены ниже – это означает, что модель является довольно продвинутой.

Датчики, которые зачастую не встречаются в дешевых смартфонах

Датчик Hall. Позволяет улавливать и анализировать магнитные поля, но обладает весьма упрощенным механизмом работы. Реагирует на магнитное поле лишь в случае его усиления, а осевая напряженность не регистрируется. Будет удобен в случае, когда используются чехол SmartCover – дисплей гаснет в тот момент, когда улавливает приближение встроенного в чехол магнита. Стоит отметить, что если в числе поддерживаемых аксессуаров существует «умная обложка», то этот датчик в телефоне присутствует. Производитель не всегда могут указывать информацию о том, что сенсор встроен в устройство.

Барометр. Датчик, который позволяет определить значение атмосферного давления. Его можно использовать и по непосредственному предназначению, и в случаях, когда требуется определить уровень высоты над уровнем моря или выяснить расположение телефона.

Термометр. Предназначен для того, чтобы с высокой точностью определять температуру в окружающей его среде.

Гигрометр (или датчик влажности). Определяет уровень влажности. Как и предыдущий датчик, был представлен впервые в модели Galaxy S4, но теперь используется во многих смартфонах и прочих устройствах.

Педометр (или шагомер). По одному лишь названию данного сенсора можно догадаться, для чего он используется. Благодаря ему определяется, сделал ли человек шаг. Это автономный датчик, который с высокой точностью идентифицирует шаги, разгружая от работы акселерометр.

Датчик, сканирующий отпечатки пальцев. Конечно, было бы логичнее рассказывать про этот сенсор в статьях, где рассказывается про то, каким образом обеспечивается надлежащий уровень безопасности мобильного устройства. Но данный сенсор по достоинству может называться одним из наиболее необходимых и важных датчиков в современных смартфонах. Он позволяет не только повысить уровень безопасности устройства, но и открывать конкретные приложения, а также подтверждать транзакции.

Датчик, сканирующий сетчатку глаза. Позволяет считать и проанализировать уникальность сетчатки глаза. В моментах, когда необходимо обеспечивать безопасность смартфону. На слуху сенсор уже довольно-таки давно, но пока реализован он в немногих смартфонах.

Датчик, анализирующий биение сердца. Изначально был встроен в модели Galaxy S5 и применялся с той целью, чтобы телефон смог стать окончательно личным помощником и тренером. Приложение под названием S-Health умело получать гораздо больше информации о человеке на всех этапах тренировок, и это позволяло предоставлять пользователю лучшие индивидуальные рекомендации.

Датчик, регистрирующий насыщение крови кислородом. Не обладает аналогами, и также используется в вышеупомянутом приложении. Если подобные приложения появятся, то он сможет успешно работать и с ними.

Дозиметр. Позволяет получить и определить дозу или мощность ионизирующего излучения. Иначе говоря, при его использовании можно измерить фон радиоактивности.

Ряд вспомогательных датчиков смартфонов

Порой, для того, чтобы уровень точности был повышен, смартфоны обеспечиваются дополнительными сенсорами, которые обладают аналогичным, но более упрощенным набором функций.

  • Вспомогательный датчик, позволяющий осуществлять пространственную ориентацию.
  • Сенсор гравитации – указывает величину, а также направление силы тяжести.
  • Указывающий значение ускорения вдоль всех трех осей, при этом не обращая внимания на уровень силы тяжести.
  • Определяющий угол отклонения мобильного девайса в момент его вращения вокруг одной оси из трех.
  • Датчик, который может определять ряд заранее установленных движений, как, например, потряхивание.
  • Для определения жестов и движений.
  • Позволяющий отслеживать и идентифицировать лицо.
  • Датчик, который может получать лишь двойной клик по дисплею.
  • Отслеживающий поворот не всего гаджета, а только его дисплея.

Конечно же, могут существовать и многие другие разнообразные датчики, но все секреты и тайны их использования известны только лишь разработчикам какого-либо программного обеспечения или же операционных мобильных систем.

Множество изделий современной электроники оснащено датчиками, распознающими приближение объекта, к примеру, пальца, к клавиатуре или уха человека к телефону. Эта технология активно используется в разного рода, что позволяет устранить механическую коммутацию устройств, а также продлить срок их службы. И у многих вполне может возникнуть вопрос: датчик приближения в телефоне - что это и как он работает? Далее будет рассмотрено данное приспособление с точки зрения реализации по емкостной технологии.

Распознавание приближения

Распознавание приближение по бесконтактной технологии довольно быстро нашло применение в области портативных устройств, питающихся автономно. Функция активно используется в последних моделях смартфонов и планшетов, в музыкальных плеерах. Ее основным назначением является повышение надежности устройств и экономия электрической энергии.

Дисплей прибора будет находиться в неактивном состоянии до тех пор, пока не будет обнаружено приближение руки пользователя, именно за это и отвечает датчик приближения в телефоне. Что это - станет понятно, если рассмотреть принцип его работы. Когда речь идет об использовании подобной технологии, то тут стоит отметить, что в дежурном режиме потреблением энергии занимается исключительно центральный процессор. А когда определяют приближение ладони или пальца, происходит включение дисплея, на котором отображается текущая информация. Все это позволяет снизить среднюю потребляемую мощность гаджета, при этом увеличив время автономной работы батареи.

Особенности использования функции в разной технике

В бытовой автоматике функция распознавания приближения тоже получила весьма широкое распространение. Бесконтактные датчики используют для включения открывания кранов водопровода, когда в поле их действия находится рука человека; дисплеи холодильников и микроволновых печей будут неактивны, пока к ним не приблизится рука пользователя. Снабжены этой функцией и новые системы автоматизации дома. используемые для управления бытовой техникой и освещением, настраиваются так, чтобы служить цифровыми фоторамками. Но как только к ним приближается кто-то из людей, сразу появляются Достаточно интересной технологией является датчик приближения в телефоне. Что это такое, поможет понять описание метода, с помощью которого происходит распознавание.

Методы распознавания приближения

Когда к датчику приближается, к примеру, палец, происходит изменение общей емкости системы. Именно оно и используется для обнаружения объекта вблизи бесконтактного сенсора.

Обнаружение изменения емкости

То, насколько точно и надежно будет работать бесконтактный датчик, полностью зависит от верности измерений изменившейся емкости системы. С такой целью разработан целый ряд методов, в числе которых самыми известными стали методы переноса зарядов, последовательного приближения, взаимодействия емкости и сигма-дельта-метод. Наиболее часто применяются два из них. Оба используют коммутируемую емкостную схему и внешний измерительный конденсатор.

Метод последовательного приближения

В данном случае осуществляется зарядка коммутируемой емкостной цепи. С этого конденсатора подается напряжение на компаратор через ФНЧ, где происходит сравнение с опорным напряжением. Счетчик, синхронизируемый с генератором, запирается при помощи выходного сигнала компаратора. Обработка именно этого сигнала осуществляется для определенного статуса датчика. Для метода последовательных приближений требуется ничтожно малое число внешних компонентов. В данном случае на работу схемы не оказывают влияния переходные помехи по питающей цепи.

Достоинства и недостатки технологии распознавания

Датчик приближения Android, как и другие, обладает определенными особенностями. К числу преимуществ в данном случае можно отнести следующие:

Довольно большая зона обнаружения;

Высокая степень чувствительности;

Относительная доступность в плане цены, ведь производство датчиков осуществляется из довольно дешевых компонентов - меди, пленки оксидов олова, индия и печатной краски, внешнего проволочного датчика;

Малый размер;

Универсальность конструкции;

Температурная стабильность;

Возможность функционирования с применением различных непроводящих покрытий, к примеру, стекол разной толщины;

Долговечность и высокая надежность.

Имеются у данного метода и определенные недостатки:

Чувствительный элемент должен быть проводящим, тогда он сможет обнаружить приближение; однако руку, к примеру, в резиновой перчатке, он может и не обнаружить;

Метод емкостного распознавания работает так, что когда в диапазоне его работы имеются металлические объекты, диапазон уменьшается.

iPhone 4

Датчик приближения работает так, что позволяет отключать экран смартфона во время разговора для исключения случайных нажатий на клавиши. Существуют специальные приложения, которые дают возможность блокировать экран, просто проводя над ним рукой. Для его включения потребуется нажать аппаратную клавишу.

Калибровка

Довольно часто пользователи сталкиваются с неприятной ситуацией, когда блокировка экрана при разговоре не осуществляется. А бывает и так, что после завершения разговора дисплей не включается, из-за чего телефон не разблокируется. К примеру, датчик приближения Nokia работает некорректно. Для устранения этой проблемы его требуется откалибровать. Обычно большинством производителей применяется специализированное программное обеспечение для этих целей, которое можно скачать на официальном сайте.

В последних версиях Android 4 функция калибровки расположена непосредственно в меню. Для этого требуется войти в настройки, отыскать экран, а потом выбрать пункт Proximity Sensor Calibration. После закрытия датчика рукой необходимо в появившемся окне нажать ОК. Иногда калибровка допускается и без закрытия сенсора.

Современный смартфон уже сложно назвать просто компьютером, ведь он умеет гораздо больше своего стационарного предка: и температуру может измерить, и высоту над уровнем моря подсказать, и влажность воздуха определить, а если вдруг забудешь свою ориентацию в пространстве или силу тяжести потеряешь - все исправит. А помогают ему в этом, как ты уже, наверное, догадался, датчики aka сенсоры. Сегодня мы познакомимся с ними поближе, а заодно и проверим, действительно ли мы находимся на Земле. 😉

Датчики всякие нужны!

Для работы с аппаратными датчиками, доступными в устройствах под управлением Android, применяется класс SensorManager , ссылку на который можно получить с помощью стандартного метода getSystemService :

SensorManager sensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE);

Чтобы начать работать с датчиком, нужно определить его тип. Удобнее всего это сделать с помощью класса Sensor , так как в нем уже определены все типы сенсоров в виде констант. Рассмотрим их подробнее:

  • Sensor.TYPE_ACCELEROMETER - трехосевой акселерометр, возвращающий ускорение по трем осям (в метрах в секунду в квадрате). Связанная система координат представлена на рис. 1.
  • Sensor.TYPE_LIGHT - датчик освещенности, возвращающий значение в люксах, обычно используется для динамического изменения яркости экрана. Также для удобства степень освещенности можно получить в виде характеристик - «темно», «облачно», «солнечно» (к этому мы еще вернемся).
  • Sensor.TYPE_AMBIENT_TEMPERATURE - термометр, возвращает температуру окружающей среды в градусах Цельсия.
  • Sensor.TYPE_PROXIMITY - датчик приближенности, который сигнализирует о расстоянии между устройством и пользователем (в сантиметрах). Когда в момент разговора гаснет экран - срабатывает именно этот датчик. На некоторых девайсах возвращается только два значения: «далеко» и «близко».
  • Sensor.TYPE_GYROSCOPE - трехосевой гироскоп, возвращающий скорость вращения устройства по трем осям (радиан в секунду).
  • Sensor.TYPE_MAGNETIC_FIELD - магнитометр, определяющий показания магнитного поля в микротеслах (мкТл) по трем осям (имеется в смартфонах с аппаратным компасом).
  • Sensor.TYPE_PRESSURE - датчик атмосферного давления (по-простому - барометр), который возвращает текущее атмосферное давление в миллибарах (мбар). Если немного вспомнить физику, то, используя значение этого датчика, можно легко вычислить высоту (а ежели вспоминать ну никак не хочется, можно воспользоваться готовым методом getAltitude из объекта SensorManager ).
  • Sensor.TYPE_RELATIVE_HUMIDITY - датчик относительной влажности в процентах. Кстати, совместное применение датчиков относительной влажности и давления позволяет предсказывать погоду - конечно, если выйти на улицу. 😉
  • Sensor.TYPE_STEP_COUNTER (с API 19) - счетчик шагов с момента включения устройства (обнуляется только после перезагрузки).
  • Sensor.TYPE_MOTION_DETECT (с API 24) - детектор движения смартфона. Если устройство находится в движении от пяти до десяти секунд, возвращает единицу (по всей видимости, задел для аппаратной функции «антивор»).
  • Sensor.TYPE_HEART_BEAT (с API 24) - детектор биения сердца.
  • Sensor.TYPE_HEART_RATE (с API 20) - датчик, возвращающий пульс (ударов в минуту). Этот датчик примечателен тем, что требует явного разрешения android.permission.BODY_SENSORS в манифесте.

Перечисленные датчики являются аппаратными и работают независимо друг от друга, часто без всякой фильтрации или нормализации значений. «Для облегчения жизни разработчиков»™ Google ввела несколько так называемых виртуальных сенсоров, которые предоставляют более упрощенные и точные результаты.

Например, датчик Sensor.TYPE_GRAVITY пропускает показания акселерометра через низкочастотный фильтр и возвращает текущие направление и величину силы тяжести по трем осям, а Sensor.TYPE_LINEAR_ACCELERATION использует уже высокочастотный фильтр и получает показатели ускорения по трем осям (без учета силы тяжести).

При разработке приложения, эксплуатирующего показания сенсоров, вовсе не обязательно бегать по улице или прыгать в воду с высокой скалы, так как эмулятор, входящий в поставку Android SDK, умеет передавать приложению любые отладочные значения (рис. 2–3).


Ищем датчики

Чтобы узнать, какие сенсоры есть в смартфоне, следует использовать метод getSensorList объекта SensorManager :

List sensors = sensorManager.getSensorList(Sensor.TYPE_ALL);

Полученный список будет включать все поддерживаемые датчики: как аппаратные, так и виртуальные (рис. 4). Более того, некоторые из них будут иметь различные независимые реализации, отличающиеся количеством потребляемой энергии, задержкой, рабочим диапазоном и точностью.

Для получения списка всех доступных датчиков конкретного типа необходимо указать соответствующую константу. Например, код

List pressureList = sensorManager.getSensorList(Sensor.TYPE_PRESSURE);

вернет все доступные барометрические датчики. Причем аппаратные реализации окажутся в начале списка, а виртуальные - в конце (правило действует для всех типов датчиков).


Чтобы получить реализацию датчика по умолчанию (такие датчики хорошо подходят для стандартных задач и сбалансированы в плане энергопотребления), используется метод getDefaultSensor :

Sensor defPressureSensor = sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE);

Если для заданного типа датчика существует аппаратная реализация, по умолчанию будет возвращена именно она. Когда нужного варианта нет, в дело вступает виртуальная версия, ну а если, увы, ничего подходящего в девайсе не окажется, getDefaultSensor вернет null .

О том, как самолично выбирать реализацию датчиков по критериям, написано во врезке, мы же плавно двигаемся дальше.

Снимаем показания

Чтобы получать события, генерируемые датчиком, необходимо зарегистрировать реализацию интерфейса SensorEventListener с помощью того же SensorManager . Звучит сложновато, но на практике реализуется одной строчкой:

Sensor defPressureSensor = sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE); sensorManager.registerListener(workingSensorEventListener, defPressureSensor, SensorManager.SENSOR_DELAY_NORMAL);

Здесь мы полученный ранее барометр по умолчанию регистрируем с помощью метода registerListener , передавая в качестве второго параметра сенсор, а в качестве третьего - частоту обновления данных.

В классе SensorManager определены четыре статические константы, определяющие частоту обновления:

  • SensorManager.SENSOR_DELAY_FASTEST - максимальная частота обновления данных;
  • SensorManager.SENSOR_DELAY_GAME - частота, обычно используемая в играх, поддерживающих гироскоп;
  • SensorManager.SENSOR_DELAY_NORMAL - частота обновления по умолчанию;
  • SensorManager.SENSOR_DELAY_UI - частота, подходящая для обновления пользовательского интерфейса.

Нужно сказать, что, указывая частоту обновления, не стоит ожидать, что она будет строго соблюдаться. Как показывает практика, данные от сенсора могут приходить как быстрее, так и медленнее.

Оставшийся нерассмотренным первый параметр представляет собой реализацию интерфейса SensorEventListener , где мы наконец-то получим конкретные цифры:

Private final SensorEventListener workingSensorEventListener = new SensorEventListener() { public void onAccuracyChanged(Sensor sensor, int accuracy) { } public void onSensorChanged(SensorEvent event) { // Получаем атмосферное давление в миллибарах double pressure = event.values; } };

В метод onSensorChanged передается объект SensorEvent , описывающий все события, связанные с датчиком: event.sensor - ссылка на датчик, event.accuracy - точность значения датчика (см. ниже), event.timestamp - время возникновения события в наносекундах и, самое главное, массив значений event.values . Для датчика давления передается только один элемент, тогда как, например, для акселерометра предусмотрено сразу три элемента для каждой из осей. В следующих разделах мы рассмотрим примеры работы с различными датчиками.

Метод onAccuracyChanged позволяет отслеживать изменение точности передаваемых значений, определяемой одной из констант: SensorManager.SENSOR_STATUS_ACCURACY_LOW - низкая точность, SensorManager.SENSOR_STATUS_ACCURACY_MEDIUM - средняя точность, возможна калибровка, SensorManager.SENSOR_STATUS_ACCURACY_HIGH - высокая точность, SensorManager.SENSOR_STATUS_UNRELIABLE - данные недостоверны, нужна калибровка.

После того как отпадает необходимость работы с датчиком, следует отменить регистрацию:

SensorManager.unregisterListener(workingSensorEventListener);

Меряем давление и высоту

Весь код для работы с датчиком давления мы уже написали в предыдущем разделе, получив в переменной pressure вполне себе значение атмосферного давления в миллибарах.

Продолжение доступно только подписчикам

Вариант 1. Оформи подписку на «Хакер», чтобы читать все материалы на сайте

Подписка позволит тебе в течение указанного срока читать ВСЕ платные материалы сайта. Мы принимаем оплату банковскими картами, электронными деньгами и переводами со счетов мобильных операторов.

Статьи и Лайфхаки

Многие задаются вопросом, что же такое датчик расстояния на телефоне, датчик движения и присутствия и чем они отличаются друг от друга. В физике это три разных устройства.

Но что касается смартфонов, то правильней сказать, что все это один сенсор.

То есть «железка» одна, но выполняет много разных функций в зависимости от типа и того, какие задачи перед ним поставил производитель гаджета.

Наверно все знакомы с работой подобных приборов. Это и двери в супермаркете, открывающиеся при обнаружении движения, и водопроводный кран включающий воду при приближении рук.

В нашем случае, это - сенсор, фиксирующий приближение объекта. А дальше, в зависимости от требования ПО, совершает определенное действие.

За что отвечает на телефоне датчик расстояния

Так, например, он выключает и блокирует экран смартфона при приближении к уху, чтоб избежать случайных нажатий и в целях экономии заряда батареи.

А по окончании разговора включает его вновь. Не потому, что он узнает ухо, а потому что это объект, зафиксированный в радиусе его действия.

Для того, чтобы проверить его работу можно в режиме разговора или диктофона поднести любой предмет к месту расположения данного сенсора на вашем устройстве, (как правило, это рядом с динамиком).

На многих современных смартфонах и планшетах он выполняет и другие задачи:

  • включает экран планшета при приближении руки;
  • переворачивает страницы электронной книги просто от взмаха руки над экраном смартфона;
  • Дает возможность выключить устройство, не касаясь его, а только проведя рукой перед сенсором.

Проблемы, возникающие при использовании датчика расстояния

У многих пользователей возникают неполадки связанные с работой этого сенсора. Не блокируется экран при разговоре, не разблокируется после окончания разговора и другие примеры некорректной работы. Способов поправить ситуацию несколько :
  • прочистить щеточкой и продуть само отверстие, где находится сенсор;
  • откалибровать датчик расстояния.
Как это сделать рассмотрим на примере Android 4.0.
  • Необходимо положить смартфон на ровную поверхность,
  • открыть «настройки», далее «Экран» и выбрать «ALS PS calibration»,
  • поднести к датчику приближения ладонь, лист бумаги или другой предмет.
  • Удерживая его неподвижно на расстоянии 1-5 см от экрана, выбрать «Calibrate».
Если в меню настроек вашего устройства нет такой функции, нужно скачать приложение для калибровки с официального сайта производителя.

Если калибровка не помогла решить проблему, то лучше посетить сервисный центр.

Акселерометр измеряет ускорение и позволяет смартфону определять характеристики движения и положения в пространстве. Именно этот датчик работает, когда вертикальная ориентация меняется на горизонтальную при повороте устройства. Он же отвечает за подсчёт шагов и измерение скорости движения во всевозможных приложениях-картах. Акселерометр даёт информацию о том, в какую сторону повёрнут смартфон, что становится важной функцией в различных приложениях с .

Этот сенсор сам состоит из маленьких датчиков: микроскопических кристаллических структур, под влиянием сил ускорения переходящих в напряжённое состояние. Напряжение передаётся акселерометру, который интерпретирует его в данные о скорости и направлении движения.

Гироскоп

Этот датчик помогает акселерометру ориентироваться в пространстве. Он, например, позволяет делать на смартфон . В играх с гонками, где управление происходит с помощью перемещения устройства, работает как раз гироскоп. Он чувствителен к поворотам устройства относительно своей оси.

В смартфонах используются микроэлектромеханические системы, а первые подобные приборы, сохраняющие ось при поворотах, появились ещё в начале XIX века.

Магнитометр

Последний в тройке сенсоров для ориентации в пространстве - магнитометр. Он измеряет магнитные поля и, соответственно, может определить, где находится север. Функция компаса в различных приложениях с картами и отдельные программы-компасы работают с помощью магнитометра.

Подобные датчики есть в металлодетекторах, так что можно найти специальные приложения, превращающие смартфон в такой прибор.

Магнитометр действует в тандеме с акселерометром и GPS для определения географического положения и навигации.

GPS

Где бы мы были без технологии GPS (Global Positioning System)? Смартфон соединяется с несколькими спутниками и высчитывает своё положение на основании углов пересечения. Бывает, что спутники недоступны: например, при большой облачности или внутри помещений.

GPS не использует данные мобильной сети, поэтому геолокация работает и вне зоны покрытия сотовой связи: даже если саму карту загрузить не получится, точка геолокации всё равно будет.

При этом функция GPS тратит много заряда аккумулятора, поэтому лучше её отключать вне надобности.

Ещё один способ геолокации, хотя и не очень точный, - это определение расстояния от вышек сотовой связи. Смартфон добавляет к данным GPS другую информацию, например силу мобильного сигнала, для уточнения местоположения.

Барометр

Многие смартфоны, в том числе iPhone, имеют этот сенсор, измеряющий атмосферное давление. Он нужен для регистрации изменения погоды и определения высоты над уровнем моря.

Бесконтактный выключатель

Этот сенсор обычно находится около динамика в верхней части смартфона и состоит из инфракрасного диода и датчика света. Он использует невидимый человеку луч, чтобы определить, находится ли устройство возле уха. Так смартфон «понимает», что во время разговора по телефону нужно отключить дисплей.

Датчик освещённости

Как можно догадаться по названию, этот сенсор измеряет уровень освещённости окружающей среды, что позволяет автоматически настраивать комфортную яркость дисплея.

Датчики с каждым новым поколением смартфонов становятся всё более эффективными, маленькими и менее энергозатратными. Поэтому не стоит думать, что, например, функция GPS в устройстве, которому уже несколько лет, будет работать так же хорошо, как в новом. И даже если в информации о новых смартфонах не указывают характеристики всех этих датчиков, будьте уверены, что именно они позволяют вам пользоваться многими впечатляющими функциями современных гаджетов.

Лучшие статьи по теме