Как настроить смартфоны и ПК. Информационный портал

Как сделать мигающую подсветку. Как сделать чтобы мигал светодиод

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Мигающий светодиод на одной батарейке

Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.

В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.

Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда. Заставить мигать глазки мягкой игрушки.

Одной из самых простых схем в любительской радиоэлектронике является светодиодная мигалка на одном транзисторе. Ее изготовление под силу любому новичку, у которого есть минимальный набор для пайки и полчаса времени.

Рассматриваемая схема хоть и отличается простотой, однако, она позволяет наглядно увидеть лавинный пробой транзистора, а также работу электролитического конденсатора. В том числе, путем подбора емкости можно легко изменять частоту мигания светодиода. Экспериментировать также можно с входным напряжением (в небольших диапазонах), которое тоже влияет на работу изделия.

Устройство и принцип работы

Мигалка состоит из следующих элементов:
  • источник питания;
  • сопротивление;
  • конденсатор;
  • транзистор;
  • светодиод.
Работает схема по очень простому принципу. В первой фазе цикла транзистор «закрыт», то есть не пропускает ток из источника питания. Соответственно, светодиод не светится.
Конденсатор расположен в цепи до закрытого транзистора, потому накапливает электрическую энергию. Происходит это до тех пор, пока напряжение на его выводах не достигнет показателя, достаточного для обеспечения так называемого лавинного пробоя.
Во второй фазе цикла накопленная в конденсаторе энергия «пробивает» транзистор, и ток проходит через светодиод. Он вспыхивает на короткое время, а затем опять гаснет, так как транзистор опять закрывается.
Далее мигалка работает в циклическом режиме и все процессы повторяются.

Необходимые материалы и радиодетали

Чтобы собрать светодиодную мигалку своими руками, работающую от источника питания с напряжением 12 В, понадобится следующее:
  • паяльник;
  • канифоль;
  • припой;
  • резистор на 1 кОм;
  • конденсатор емкостью 470-1000 мкФ на 16 В;
  • транзистор КТ315 или его более современный аналог;
  • классический светодиод;
  • простой провод;
  • источник питания на 12 В;
  • спичечный коробок (необязательно).


Последний компонент выступает в роли корпуса, хотя собрать схему можно и без него. В качестве альтернативы можно использовать монтажную плату. Навесной монтаж, описанный далее, рекомендуется для начинающих радиолюбителей. Такой способ сборки позволяет быстрее сориентироваться в схеме и сделать все правильно с первого раза.

Последовательность сборки мигалки

Изготовление светодиодной мигалки на 12 В осуществляется в следующей последовательности. Первым делом подготавливаются все вышеперечисленные компоненты, материалы и инструменты.
Для удобства светодиод и провода питания лучше сразу закрепить на корпусе. Далее к выводу «+» следует припаять резистор.




Свободная «ножка сопротивления соединяется с эмиттером транзистора. Если КТ315 расположить маркировкой вниз, то этот вывод будет у него крайним правым. Далее эмиттер транзистора соединяется с положительным выводом конденсатора. Определить его можно по маркировке на корпусе – «минус» обозначается светлой полосой.
Следующим этапом идет соединение коллектора транзистора с положительным выводом светодиода. У КТ315 – это ножка посредине. «Плюс» светодиода можно определить визуально. Внутри элемента имеется два электрода, отличающихся размерами. Тот, который поменьше, и будет положительным.



Теперь осталось только припаять отрицательный вывод светодиода к соответствующему проводнику источника питания. К этой же линии подсоединяется «минус» конденсатора.
Светодиодная мигалка на одном транзисторе готова. Подав на нее питание, можно увидеть ее работу по вышеописанному принципу.
Если есть желание уменьшить или увеличить частоту мигания светодиода, то можно поэкспериментировать с конденсаторами, имеющими разную емкость. Принцип очень простой – чем больше емкость элемента, тем реже будет мигать светодиод.

Множество устройств дополняются мигающими светодиодами, обеспечивая подачу необходимых сигналов или простую подсветку.

  • Особенности светодиодов
    • Заставляем RGB мигать

Особенности светодиодов

Прежде чем сделать оригинальный мигающий светодиод, необходимо узнать некоторые моменты относительно этих устройств.

  • Излучаемый свет зависит от ряда показателей;
  • Коэффициент полезного действия может быть разным. Причем самые слабые — синие;
  • Как для полупроводниковых элементов, КПД у светодиодов (СД) достаточно мал. В большинстве случаев он не превышает 45 процентов;
  • Одновременно с низким КПД, светодиоды отличаются превосходной эффективностью превращения в световую энергию электричества;
  • На каждый Вт электроэнергии приходится количество фотонов, примерно в 6-7 раз превышающих показатели спирали накаливания при аналогичных потребительских условиях;
  • Такие возможности светодиодов объясняют популярность создания мигающих ламп на основе СД;
  • Светодиодам требуется достаточно маленькое напряжение, чтобы схема оказалась рабочей;
  • Чтобы добиться эффекта мигания, следует соответствующим образом подобрать пассивные и ключевые элементы. Тогда схема сможет выдавать мигание требуемой формы — скважность, частота следования или амплитуда.

Для создания своими руками мигающего устройства можно воспользоваться платформой Ардуино. Ардуино — это аппаратная вычислительная платформа. Что самое интересно, Ардуино предназначена для аматорского использования, позволяет создавать всевозможные схемы.

Питающие напряжения для светодиодов

Чтобы создать красный, синий, желтый или любой другой светодиод или полноценную светодиодную ленту, сделать это путем подключения к сети на 220 Вольт — не самое лучшее решение.

На практике подобные схемы через питание на 220 Вольт существуют, но самостоятельно добиться эффекта мигания крайне сложно.

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Куда правильнее, когда схема использует более подходящее питающее напряжение.

  1. 5 Вольт. Такое напряжение вы можете встретить в зарядных устройствах для телефонов, во многих современных гаджетах. Величина выходного тока здесь небольшая, но обычно таковая и не требуется. Дополнительно 5 Вольт можно отыскать на шинах блока питания компьютера. В этой ситуации вы не будете ограничены по току. Питающий провод будет красный, а заземление — черный.
  2. 7-9 Вольт. Наиболее часто встречается подобное напряжение на рациях. Каждая компания выпускает свои рации со своими нюансами, потому конкретных рекомендаций дать проблематично. Но поскольку рации часто приходят в негодность, проблем с получением бесплатного зарядного устройства не возникает.
  3. 12 Вольт. 12 Вольт является стандартным показателем напряжения для сегмента микроэлектротехники. Встречаются 12 Вольт повсеместно. В тех же компьютерных блоках они присутствуют обязательно. Здесь изоляция — это синий, а не красный провод. 12 Вольт считается оптимальным решением, потому рекомендуем вам остановиться именно на нем.
  4. 3,3 В. Многие могут сказать, что подобный номинал слишком мал, потому особой популярностью пользоваться не будет. Частично это справедливое утверждение. Но исключением является ситуация, где в дело идет RGB светодиод SMD0603. Только учтите, что при падении в прямом направлении напряжения более 3 В, могут возникнуть проблемы.

Заставляем RGB мигать

Эта схема наиболее интересная, поскольку позволяет использовать указанные светодиоды SMD.

  • Для подключения SMD 0603 идеальным источником напряжения станет не батарейка, а блок питания от вашего компьютера. По меньшей мере, протестировать схему с его помощью можно;
  • Вам потребуется установить резисторный делитель;
  • Чтобы сделать это своими руками, вам потребуется схема и техническая документация. Они позволят дать оценку сопротивлением p-n переходов в прямом направлении, используя тестер;
  • Непосредственно прямое измерение здесь недопустимо;
  • Вместо этого собирается схема.

  1. Схема предоставлена уже вместе с номерами ножек, учитывая технические параметры.
  2. Питание идет на катод, из-за чего полярность является отрицательной. Для открытия p-n перехода напряжения в 3,3 Вольт будет вполне достаточно.
  3. Используя переменный резистор, за слишком большим его номиналом гнаться не стоит. Согласно рисунку, максимальный предел переменного резистора составляет 680 Ом. В таком положении элемент должен изначально располагаться.
  4. Зачастую показатели сопротивления у открытых p-n переходов небольшие. Однако нам необходимо получить приличный запас. Это позволит светодиодам не перегореть.
  5. Не забывайте, что максимальное прямое напряжение превышать 3 Вольт не должно.
  6. Учтите другой момент. Если вольтаж каждого диода окажется низким, сопротивление окажется на уровне 700 Ом.
  7. В случае параллельного включения параметры суммарного сопротивления вычисляются согласно формуле, приведенной ниже на изображении.
  8. Вставляем в эту формулу три входных параметра по 700 Ом и в результате получаем 233 Ом. Это и будет сопротивлением наших светодиодов на момент, когда они только начнут открываться.
  9. При выполнении подключений обязательно контролируйте режим с помощью тестера. Чтобы сделать это, старайтесь постоянно делать замеры напряжения на схеме, параллельно уменьшая сопротивление. Делается это до тех пор, пока разница потенциалов не окажется на уровне 2,5 Вольт.
  10. Повышать вольтаж до еще больших значений не рекомендуется, поскольку это уже опасно. Часто схема предусматривает использование около 2,2 Вольт, не доводя разницу потенциалов до 2,5 единиц. Но тут действуйте на свое усмотрение и следите за правильностью сборки схемы.
  11. После этого, исходя из пропорций, можно отыскать нужное нам сопротивление светодиодной схемы.
  12. Учтите, что провод с номиналом 3,3 В на компьютерном блоке питания не красный, а оранжевый. Заземление берется от черного. Подключать подобный модуль без нагрузок не рекомендуется. Используйте какой-то проигрыватель DVD или подобное ему устройство.

А где именно применить мигающие светодиоды? Тут вы действуйте на свое усмотрение. Вам же потребовалось для чего-то собрать схему для обеспечения мигания этих ламп? Соответственно, определенные задумки относительно применения схемы у вас имеются.

Красный, синий, желтый, оранжевый — светодиод может быть самым разнообразным. Это позволяет создавать целые оригинальные ленты из диодов. Некоторые могут работать от простой батарейки, либо от более серьезного источника питания.

При детальном изучении особенностей мигающих светодиодов, многим удается вскоре самостоятельно создать нечто вроде новогодних гирлянд с регулируемой частотой мигания. Принципиально сложного в подобных схемах ничего нет. Но начинать стоит с малого.

Инструкция

Наиболее просто заставить мигать светодиод со встроенным прерывателем. Для этого подайте на него напряжение в прямой полярности. Некоторые из таких диод ов содержат встроенные резисторы, что позволяет подавать на них напряжение, не превышающее четырех вольт, без внешнего резистора. Но помните, что в них также имеются защитные диод ы, включенные в обратной полярности. Если подключить такой светодиод к источнику неправильно, и при этом не использовать резистор, защитный диод разогреется и расплавит светоизлучающий кристалл. Чтобы этого не случилось, при проверке полярности такого светодиод а используйте резистор в обязательном порядке. Так же поступайте при напряжении питания, превышающем четыре вольта, а также в случае, если неизвестно, есть ли в мигающем светодиод е защитный резистор.

Периодически включая и выключая кристалл, прерыватель в мигающем светодиод е соответствующим образом модулирует и потребляемый ток прибора. Это позволяет использовать его для прерывания тока через еще два-три обычных светодиод а. Включите их, соблюдая полярность, последовательно с мигающим. В это же цепочку включите последовательно и резистор, а напряжение питания увеличьте, чтобы его хватило для открывания всех светодиод ов. Обычные светодиод ы будут мигать синхронно с мигающим.

В ряде случаев необходимо, чтобы светодиод ы мигали не синхронно, а в разнобой. В этом случае мигающими должны быть они все. Включите их параллельно, соблюдая полярность. Если они требуют резисторов, включите таковые последовательно с каждым из них.

Заставить светодиод мигать можно и другими способами. Наиболее распространенный из них заключается в применении RC-генераторов, иначе называемых мультивибраторами. Они делятся на симметричные, несимметричные и выполненные на логических элементах. Попробуйте, в частности, построить такой генератор по схеме, показанной на иллюстрации. В этом случае два светодиод а будут мигать попеременно.

Если вы строите конструкцию, в состав которой входит программно-аппаратная платформа Arduino или аналогичная, дополнительных элементов для того, чтобы заставить его мигать, не используйте. Подключите его через резистор либо анодом к плюсу питания и катодом к выходу контроллера, либо катодом к общему проводу и анодом к выходу контроллера. В первом случае он будет светиться при логическом нуле, во втором - при логической единице. Написав программу таким образом, чтобы логический уровень на соответствующем выхода периодически менялся, вы заставите светодиод мигать.

Вашему вниманию представлена, наверное, самая простая, но интересная схема мигалки на светодиоде . Если у вас есть меленькая новогодняя елочка из блестящего дождика то вмонтированный в ее основание яркий светодиод в 5-7 Кд который не просто горит, а еще и мигает – очень простое и красивое украшение рабочего места. Питание схемы 3-12 В, может быть заменено на питание от порта USB. Предыдущая статья также была про мигалку на светодиодах , но в отличие от нее данная статья расскажет про мигалку на одном светодиоде, что никоим образом не сужает ее область применения, я бы сказал даже наоборот. Наверняка вы не однократно видели подмигивающий зеленый, красный или синий огонек, например, в автомобильной сигнализации . Теперь и у вас есть возможность собрать простейшую схему мигалки на светодиоде. Ниже будет представлена таблица с параметрами деталей в схеме для определения частоты вспышек.

Кроме такого применения можно использовать мигалку на светодиоде как эмулятор автомобильной сигнализации. Установка новой автомобильной сигнализации дело не простое и хлопотное, а, имея под рукой указанные детали можно быстро собрать схему мигалки на светодиоде и вот уже ваш автомобиль на первое время «защищен». Во всяком случае от случайного взлома. Такая «автомобильная сигнализация» - мигающий в щели торпеды светодиод отпугнет неопытных взломщиков, ведь это первый признак работающей сигналки? Да мало ли где еще понадобится мигающий светодиод.

Частота с которой зажигается светодиод зависит от сопротивления резисторов R1 и R2 и емкости конденсатора С1. На момент отладки вместо резисторов R1 и R2 можно использовать переменные резисторы соответствующих номиналов. Для небольшого упрощения подбора элементов, в таблице ниже указаны номиналы деталей и соответствующая им частота вспышек.

Если мигалка на светодиоде при каких-то номиналах отказывается работать необходимо, прежде всего, обратить внимание на резистор R1, его сопротивление может быть слишком мало, а также на резистор R2, его сопротивление может быть слишком большим. От резистора R2 зависит длительность самих импульсов, а от резистора R1 длительность паузы между импульсами.

Схема мигалки на светодиоде с небольшими доработками может стать генератором звуковых импульсов . Для этого потребуется на место резистора R3 установить динамик сопротивлением до 4 Ом. Светодиод HL1 заменить на перемычку. В качестве транзистора VT2 использовать транзистор достаточной мощности. Кроме этого необходимо подобрать конденсатор С1 необходимой емкости. Выбор осуществляется следующим образом. Скажем у нас элементы с параметрами из 2 строки таблицы. Частота импульсов 1Гц (60 импульсов в минуту). А мы хотим получить звук с частотой 1000Гц. Следовательно надо уменьшить емкость конденсатора в 1000 раз. Получаем 10мкФ / 1000 = 0,01мкФ = 10нФ. Помимо этого можно поиграть с уменьшением сопротивления резисторов, но не сильно увлекайтесь, можно пожечь транзисторы.

Один из наших постоянных читателей, специально для нашего сайта предложил еще один вариант очень простой светодиодной мигалки. Смотрите видео:

Лучшие статьи по теме