Как настроить смартфоны и ПК. Информационный портал

Как работает Python? Синтаксис языка Python.

Язык программирования Python является универсальным языком высокого уровня. Он может быть встроен и расширен. Например, он входит в некоторые приложения в виде инструмента для написания макросов. Такая особенность делает язык программирования Python разумным выбором для осуществления многих задач программирования. Где лучше его использовать? Python прекрасно подойдет для проектов, которые требуют быстрой разработки. Данный язык программирования поддерживает несколько парадигм. Это особенно хорошо для программ, которые требуют гибкости. Наличие множества модулей и пакетов экономит время и обеспечивает универсальность. Создателем языка Python является Гвидо ван Россум. В свое время сообщество удостоило его званием «великодушный пожизненный диктатор». Гвидо в конце 80-х годов нравились особенности нескольких языков программирования. Однако ни один из этих языков не обладал теми возможностями, которые ему хотелось бы иметь. Так, например, язык должен был обладать следующими возможностями:

— язык сценариев. Сценарий представляет собой программу, которая используется для управления другими программами. Языки сценариев могут использоваться для прототипирования и быстрой разработки. По этой причине они прекрасно справляются с передачей данных от одного компонента к другому и избавляют программистов от таких сложных вещей, как управление памятью. Программисты называют Python динамическим языком программирования.

— отступ для группирования операторов. Язык программирования Python определяет принадлежность выражений к одной группе при помощи отступов. Данная группа называется блоком кода. В других языках программирования используются другие знаки препинания и синтаксис. Так, например, в языке С символ «{» означает начало последовательности команд. Наличие отступов является хорошей практикой в других языках программирования. Однако один из первых языков программирования, в котором принудительно обеспечивается соблюдение отступов, является Python. Что же это дает? Прежде всего отступы делают код более удобным для чтения. Кодовые блоки требуют меньше обозначения начала и конца. А это значит, то в коде будет меньше знаков препинания, которые так просто можно пропустить. Это все ведет к уменьшению количества ошибок в коде.

— типы данных высокого уровня. Персональные компьютеры хранят данные в нулях и единицах. Однако люди нуждаются в более сложных формах хранения информации, таких как текст. Если язык поддерживает сложные данные, про него говорят, что он поддерживает типы данных высокого уровня. Оперировать такими типами данных легко. В Python, например, строки можно объединять или разделять, переводить в нижней или верхний регистр, осуществлять поиск и т.п. Типы данных высокого уровня, такие как словари и списка, которые могут хранить в себе другие данные, имеют более широкие функциональные возможности.

— расширяемость. Расширяемость означает, что язык программирования может быть дополнен. Расширяемые языки программирования являются очень мощными. Дополнения делают их пригодными для огромного количества операционных систем и применений. Расширения могут добавлять новые типы данных, плагины и модули. Для расширения в языке Python предусмотрено несколько способов. Главная группа программистов работает над его улучшением и изменением. Сотни других пишут модули для выполнения конкретных целей.

— интерпретация. Выполняются интерпретируемые языки непосредственно из исходного кода, который был написан людьми. Программы, написанные на компилируемых языках, типа C++, должны быть переведены в машинный код. Как правило, интерпретируемые языки программирования работают более медленно, поскольку трансляция осуществляется не мгновенно. Однако отладка и написание самих программ осуществляется заметно быстрее, поскольку нет необходимости ожидать завершения работы компилятора. Интерпретируемые языки программирования легче переносятся на различные платформы. Можно долго спорить, является ли Python компилируемым или интерпретируемым языком. Несмотря на то, что во многих отношениях данный язык программирования работает как интерпретируемый, его код перед выполнением компилируется. Многие его компоненты работают на полной скорости компьютера, поскольку написаны они на С.

Писать язык Python Гвидо начал во время каникул в 1989 году. Весь следующий год он дорабатывал язык, ориентируясь на отзывы коллег. Перед широкой публикой результат предстал в 1991 году. Именно тогда он был размещен в одной из новостных групп Usenet.

Python для новичков

Прежде чем приступать к написанию программ на Python, его необходимо установить. У версий Python 3.5 и Python 2.7 имеются существенные отличия. Из-за них программы, которые на них написаны, несовместимы. Данный язык предустановлен на компьютеры «Макинтош». Его версия будет зависеть от возраста операционной системы. Если вы работаете с Windows, то вам придется самостоятельно устанавливать Python на свой компьютер. Выбрать файлы инсталляционного пакета можно непосредственно на сайте Python.org

Способы взаимодействия

Одна из причин простоты, которая проявляется при программировании на Python, заключается в том, что он поставляется в комплекте с инструментами, которые могут писать, разрабатывать и отлаживать программы. Команды в интерактивном режиме вводятся по одной строке за раз. Этот процесс аналогичен тому, как операционная система воспринимает команды из командной строки. Можно также создавать и короткие многострочные программы или импортировать код из текстовых файлов или модулей Python. Начинающим наверняка будет полезно узнать о том, что интерактивный режим включает в себя обширную справочную систему. Для изучения возможностей языка программирования такой способ является очень удобным. В среду разработки IDLE входят инструменты для написания и запуска программ, система отслеживания имен. Данная среда написана на языке программирования Python. Она демонстрирует обширные возможности данного языка.

Интерактивный режим

В интерактивном режиме можно делать практически все то же самое, что и в программе. Здесь можно даже писать многострочные коды. Этот режим может использоваться в качестве песочницы для безопасных экспериментов. Кроме того, интерактивный режим может выступать в качестве среды, позволяющей изучать программирование на Python. Также он может использоваться как инструмент для поиска и исправления ошибок. Стоит учитывать, что сохранить информацию, которая была введена в интерактивном режиме невозможно. Для этого следует записать копию кода и полученный результат в отдельный файл. Можно использовать интерактивный режим в качестве калькулятора. Здесь также можно манипулировать текстом или присваивать значения переменным. Также имеется возможность импортирования модулей, функций или частей программ для их тестирования. Все это дает возможность экспериментировать с объектами Python без необходимости написания длинных программ. Также нет необходимости и в отладке программ путем импортирования их частей по одной за раз.

Работа в интерактивном режиме

После того, как Python будет запущен, в окне терминала отобразиться информация об используемой версии программы, ее дате выпуска. Также здесь будет приведено несколько подсказок для осуществления дальнейших действий и приглашение ввода: >>>. Чтобы начать работать в интерактивном режиме необходимо ввести выражение и команду и нажать на кнопку ввода. Python после этого должен интерпретировать введенную команду или отреагировать должным образом, если набранное не требует ответа. Приведем команду, которая печатает строку. Так как место печати в команде не указано, вывод информации будет осуществляться на экран.

>>> print «Hello World!»

Трудно поверить, но эта единственная строка является программой. Python в интерактивном режиме обрабатывает каждую строку введенного кода после того, как будет нажата клавиша Enter. Результат появится ниже.

Просмотр информации об объекте

В интерактивном режиме существует два способа, которые могут быть использованы для просмотра информации об объекте:

— ввести имя объекта и нажать на клавишу ввода;

— ввести команду Print, имя объекта и нажать на Enter.

Результат будет зависеть от выбранного вами объекта. При использовании определенных типов данных два этих метода могут дать совершенно одинаковый результат.

>>> x=

>>> print x

Результат набора команды «print имя» будет немного отличаться от результата, который был получен для ввода имени. Значение в первом случае заключается в кавычки, а во втором нет.

>>> x= «MySrting»

В тех случаях, когда имя относится к целому блоку кода, ввод имени даст информацию о виде данных, их имени и месте хранения.

В следующем примере приведена команда создания класса, имеющего имя Message и выводится информация о нем:

>>> class Message:

>>> Message

>>> print Message

Строки в Python

В языке программирования Python строки представляют собой последовательности символов. Создается строковый литерал путем заключения символов в одинарные, двойные или тройные кавычки. Переменной в приведенном примере присваивается значение x.

>>>x= «My String»

У строки Python имеется несколько встроенных возможностей. Одной из таких возможностей является способность вернуть копию строки со строчными буквами. Известны эти возможности как методы. Для того чтобы вызвать метод объекта, необходимо использовать точечный синтаксис. Это означает, что после ввода имени переменной, которая является в данном случае ссылкой на объект строки, необходимо поставить оператор точку – (.). Затем следует название метода с последующим открытием или закрытием скобки.

>>>x.lower ()

При помощи оператора индексирования s[i] можно получить только часть строки. В данном случае индексация будет начинаться с нуля. S возвращает первый символ в строке, s – второй, и так далее.

Строковые методы могут работать как обычными кодами, так и с «Юникодом». Они позволяют выполнять следующие операции:

— изменение кодировки (decode, encode);

— изменение регистра (lower, swapcase, upper, capitalize, title);

— подсчет (count);

— замену и поиск (replace, find, rfind, rindex, index, translate);

— объединение и разделение (partition, join, split, rpartition, splitlines);

— проверка выполнения условий (endswith, startwith, isalnum, isdigit, isalpha, isspace, istitle, isupper);

— форматирование (ljust, center, rstring, strip, expandtabs, rjust).

Python: работа со списками

Если в языке программирования Python строки ограничены символами, то списки не имеют каких-либо ограничений. Списки представляют собой упорядоченные последовательности произвольных объектов, в которые также могут входить и другие списки. Также существует возможность удалять, добавлять или изменять их элементы. Далее приведены примеры выполнения данных операций со списками:

>>> bases = [‘A’, ‘C’, ‘G’, ‘D’]

[‘A’, ‘C’, ‘G’, ‘D’]

>>> bases.append(‘T’)

>>> bases [‘A’, ‘C’, ‘G’, ‘D’, ‘T’]

>>> bases.reverse()

>>> bases [‘T’, ‘D’, ‘G’, ‘C’, ‘A’]

‘T’ >>>

>>> bases.remove(‘T’)

>>> bases [‘D’, ‘G’, ‘C’, ‘A’]

>>> bases.sort()

[‘A’, ‘C’, ‘G’, ‘D’]

В приведенном примере был создан список символов. После этого в один конец списка был добавлен элемент. Затем порядок элементов был обращен. Также элементы извлекались по позиции их индекса. Элемент со значение «T» был удален, после чего была выполнена сортировка элементов. Пример команды по удалению элемента из списка иллюстрирует ситуацию, в которой методу remove () нужно предоставить дополнительную информацию. В данном случае это было то значение, которое требуется удалить. Кроме методов вроде remove (), язык программирования Python также обладает еще одной похожей возможностью, которая называется функцией. Основное отличие между методом и функцией состоит в том, что функция не связана с каким-то конкретным объектом.

Функции в языке программирования Python

В языке программирования Python функции используются для выполнения действий над одним или несколькими значениями. После этого они возвращают результат. В Python имеется большое количество встроенных функций. Рассмотрим некоторые примеры встроенных функций:

— len () – возвращает количество элементов в последовательности;

— list () – возвращает новый список, который инициализирован из какой-либо другой последовательности;

— dir () – возвращает список строк, которые представляют атрибуты объекта.

Также в Python есть возможность определения собственных функций.

Python является широко используемым, высокоуровневым языком программирования, который был назван в честь знаменитого британского комедийного телешоу «Летающий цирк Монти Пайтона ». Язык Python простой по своей структуре, и в то же время невероятно гибкий и мощный. Учитывая, что код Python легко читаемый и без излишней строгости в синтаксисе, многие считают, что он является лучшим вводным языком программирования.

Python — описание языка, которое дали в Foundation описывает Python :

Python – это интерпретируемый, интерактивный, объектно-ориентированный язык программирования. Он включает в себя модули, исключения, динамическую типизацию, высокоуровневые динамические типы данных и классы. Python сочетает в себе отличную производительность с понятным синтаксисом. В нем реализованы интерфейсы ко многим системным вызовам и библиотекам, а также различным оконным системам и он расширяем с помощью C и C++. Python используется как язык расширения для приложений, которым нужен программный интерфейс. И наконец, Python — это кроссплатформенный язык: он работает на многих версиях Unix, на Mac и на компьютерах под управлением MS-DOS, Windows, Windows NT и OS/2.

Какой язык программирования изучить первым?

Можно начать изучение с Python языка программирования. Чтобы проиллюстрировать, чем Python отличается от других вводных языков, вспомните время, когда вы были подростком.

Изучение программирования с помощью Python подобно вождению родительского минивэна. Как только вы сделаете на нем несколько кругов по парковке, вы начнете понимать, как управлять автомобилем.

Пытаться изучить программирование с помощью C (или даже ассемблера ) это как, учиться водить, собирая минивэн ваших родителей. Вы застрянете в гараже на несколько лет, компонуя части вместе, и когда у вас появится полное понимание того, как работает машина, и будете способны выявлять неисправности и прогнозировать будущие проблемы, вы уже перегорите, прежде чем когда-либо сядете за руль.

Преимущества Python

Язык Python для начинающих универсален. Вы можете автоматизировать рабочие процессы, создавать сайты, а также настольные приложения и игры с помощью Python . К слову, спрос на разработчиков Python (PostgreSQL, OOP, Flask, Django ) резко вырос за последние несколько лет в таких компаниях, как Instagram , Reddit , Tumblr , YouTube и Pinterest .

Высокоуровневый язык общего назначения

Python относится к высокоуровневым языкам программирования. Используя его, вы сможете создавать практически любые типы программного обеспечения. Эта универсальность поддерживает ваш интерес, так как вы разрабатываете программы и решения, ориентированные на ваши интересы, а не застреваете в дебрях языка, беспокоясь о его синтаксисе.

Интерпретируемый язык

Язык программирования Python для начинающих является интерпретируемым, а это значит, что вам не нужно знать, как компилировать код. Поскольку этап компиляции отсутствует, возрастает производительность, а время для редактирования, тестирования и отладки в значительной мере уменьшается. Просто скачайте интегрированную среду разработки (IDE ), напишите свой код и нажмите «Выполнить » (Run ).

Читаемость кода является ключевым моментом

Простой, легкий в изучении синтаксис Python делает упор на читаемость и задает хороший стиль программирования. С Python вы можете выразить свою концепцию меньшим количеством строк кода. Этот язык также заставляет вас обдумывать логику программы и алгоритмы. В связи с этим он часто используется как скриптовый или интегрирующий язык (glue language ), чтобы связать существующие компоненты вместе и писать большие объемы легко читаемого и работоспособного кода в короткие промежутки времени.

Это просто весело

Нельзя назвать язык программирования в честь Монти Пайтона , не имея чувства юмора. Более того, было проведено тестирование для сравнения времени, необходимого для написания простого скрипта на различных языках (Python, Java, C, J, BASIC ):

…Python требует меньше времени, меньше строк кода и меньше концептов, чтобы достичь поставленной цели… И в довершение всего, программирование на Python это весело! Веселье и частый успех порождает уверенность и интерес у студентов, которые становятся лучше подготовленными к дальнейшему изучению языка Python.

Перевод статьи «Why Learn Python? » был подготовлен дружной командой проекта .

Хорошо Плохо

Будучи удачно спроектированным языком программирования Python прекрасно подходит для решения реальных задач из разряда тех, которые разработчикам приходится решать ежедневно. Он используется в самом широком спектре применений - и как инструмент управления другими программными компонентами, и для реализации самостоятельных программ. Фактически круг ролей, которые может играть Python как многоцелевой язык программирования, практически не ограничен: он может использоваться для реализации

всего, что угодно, - от веб-сайтов и игровых программ до управления роботами и космическими кораблями.

Однако сферу использования Python в настоящее время можно разбить на несколько широких категорий. Следующие несколько разделов описывают наиболее типичные области применения Python в наши дни, а также инструментальные средства, используемые в каждой из областей. У нас не будет возможности заняться исследованием инструментов, упоминаемых здесь. Если какие-то из них заинтересуют вас, обращайтесь на веб-сайт проекта Python за более

Системное программирование

Встроенные в Python интерфейсы доступа к службам операционных систем делают его идеальным инструментом для создания переносимых программ и утилит системного администрирования (иногда они называются инструментами командной оболочки). Программы на языке Python могут отыскивать файлы и каталоги, запускать другие программы, производить параллельные вычисления с использованием нескольких процессов и потоков и делать

многое другое.

Стандартная библиотека Python полностью отвечает требованиям стандартов POSIX и поддерживает все типичные инструменты операционных систем: переменные окружения, файлы, сокеты, каналы, процессы, многопоточную модель выполнения, поиск по шаблону с использованием регулярных выражений, аргументы командной строки, стандартные интерфейсы доступа к потокам данных, запуск команд оболочки, дополнение имен файлов и многое

Кроме того, системные интерфейсы в языке Python созданы переносимыми, например сценарий копирования дерева каталогов не требует внесения изменений, в какой бы операционной системе он ни использовался. Система Stackless Python, используемая компанией EVE Online, также предлагает улучшенные решения, применяемые для параллельной обработки данных.

Графический интерфейс

Простота Python и высокая скорость разработки делают его отличным средством разработки графического интерфейса. В состав Python входит стандартный объектно-ориентированный интерфейс к Tk GUI API, который называется tkinter(B Python 2.6 он называется Tkinter)t позволяющий программам на языке Python реализовать переносимый графический интерфейс с внешним видом, присущим операционной системе. Графические интерфейсы на базе Python/

tkinter без изменений могут использоваться в MS Windows, X Window (в one-рационных системах UNIX и Linux) и Mac OS (как в классической версии, так и в OS X). Свободно распространяемый пакет расширения PMW содержит дополнительные визуальные компоненты для набора tkinter. Кроме того, существует прикладной интерфейс wxPython GUI API, основанный на библиотеке C++, который предлагает альтернативный набор инструментальных средств построения переносимых графических интерфейсов на языке Python.

Инструменты высокого уровня, такие как PythonCard и Dabot построены на основе таких API, как wxPython и tkinter. При выборе соответствующей библиотеки вы также сможете использовать другие инструменты создания графического интерфейса, такие как Qt (с помощью PyQt), GTK (с помощью PyGtk), MFC (с помощью PyWin32), .NET (с помощью IronPython), Swing (с помощью Jython - реализации языка Python на Java, которая описывается в главе 2, или JPype). Для разработки приложений с веб-интерфейсом или не предъявляющих высоких требований к интерфейсу можно использовать Jython, веб-фреймворки на языке Python и CGI-сценарии, которые описываются в следующем разделе и обеспечивают дополнительные возможности по созданию пользовательского интерфейса.

Веб-сценарии

Интерпретатор Python поставляется вместе со стандартными интернет-модулями, которые позволяют программам выполнять разнообразные сетевые операции как в режиме клиента, так и в режиме сервера. Сценарии могут производить взаимодействия через сокеты, извлекать информацию из форм, отправленных серверным CGI-сценариям; передавать файлы по протоколу FTP; обрабатывать файлы XML; передавать, принимать, создавать и производить разбор

писем электронной почты; загружать веб-страницы с указанных адресов URL; производить разбор разметки HTML и XML полученных веб-страниц; производить взаимодействия по протоколам XML-RPC, SOAP и Telnet и многое другое.

Библиотеки, входящие в состав Python, делают реализацию подобных задач удивительно простым делом.

Кроме того, существует огромная коллекция сторонних инструментов для создания сетевых программ на языке Python, которые можно найти в Интернете. Например, система HTMLGen позволяет создавать HTML-страницы на основе описаний классов Python. Пакет mod_python предназначен для запуска сценариев на языке Python под управлением веб-сервера Apache и поддерживает шаблоны механизма Python Server Pages. Система Jython обеспечивает

бесшовную интеграцию Python/Java и поддерживает серверные апплеты, которые выполняются на стороне клиента.

Помимо этого для Python существуют полноценные пакеты веб-разработки, такие как Django, TurboGears, web2py, Pylons, Zope и WebWare, поддерживающие возможность быстрого создания полнофункциональных высококачественных веб-сайтов на языке Python. Многие из них включают такие возможности, как объектно-реляционные отображения, архитектура Модель/Представление/Контроллер (Model/View/Controller), создание сценариев, выполняющихся на стороне сервера, поддержка шаблонов и технологии AJAX, предоставляя

законченные и надежные решения для разработки веб-приложений.

Интеграция компонентов

Возможность интеграции программных компонентов в единое приложение с помощью Python уже обсуждалась выше, когда мы говорили о Python как о языке управления. Возможность Python расширяться и встраиваться в

системы на языке С и C++ делает его удобным и гибким языком для описания поведения других систем и компонентов. Например, интеграция с библиотекой на языке С позволяет Python проверять наличие и запускать библиотечные компоненты, а встраивание Python в программные продукты позволяет производить настройку программных продуктов без необходимости пересобирать эти продукты или поставлять их с исходными текстами.

Такие инструменты, как Swing и SIP, автоматически генерирующие программный код, могут автоматизировать действия по связыванию скомпилированных компонентов в Python для последующего их использования в сценариях, а система Cython позволяет программистам смешивать программный код на Python и С. Такие огромные платформы на Python, как поддержка СОМ

в MS Windows, Jython - реализация на языке Java, IronPython - реализация на базе.NET и разнообразные реализации CORBA, предоставляют альтернативные способы организации взаимодействий с программными компонентами. Например, в операционной системе Windows сценарии на языке Python могут использовать платформы управления такими приложениями, как MS Word и Excel.

Приложения баз данных

В языке Python имеются интерфейсы доступа ко всем основным реляционным базам данных - Sybase, Oracle, Informix, ODBC, MySQL, PostgreSQL, SQLite и многим другим. В мире Python существует также переносимый прикладной программный интерфейс баз данных, предназначенный для доступа к базам данных SQL из сценариев на языке Python, который унифицирует доступ к различным базам данных. Например, при использовании переносимого API сценарий, предназначенный для работы со свободной базой данных MySQL, практически без изменений сможет работать с другими системами баз данных (такими как Oracle). Все, что потребуется сделать для этого, - заменить используемый низкоуровневый интерфейс.

Стандартный модуль pickle реализует простую систему хранения объектов, что позволяет программам сохранять и восстанавливать объекты Python в файлах или в специализированных объектах. В Сети можно также найти систему, созданную сторонними разработчиками, которая называется ZODB.

Она представляет собой полностью объектно-ориентированную базу данных

для использования в сценариях на языке Python. Существуют также

инструменты, такие как SQLObject и SQLAlchemy, которые отображают

реляционные таблицы в модель классов языка Python. Начиная с версии Python 2.5,

стандартной частью Python стала база данных SQLite.

Быстрое создание прототипов

В программах на языке Python компоненты, написанные на Python и на С, выглядят одинаково. Благодаря этому можно сначала создавать прототипы систем на языке Python, а затем переносить выбранные компоненты на компили-рующие языки, такие как С и C++. В отличие от ряда других инструментов разработки прототипов, язык Python не требует, чтобы система была полностью переписана, как только прототип будет отлажен. Части системы, которые не требуют такой эффективности выполнения, какую обеспечивает C++, можно

оставить на языке Python, что существенно упростит сопровождение и использование такой системы.

Программирование математических

и научных вычислений

Расширение NumPy для математических вычислений, упоминавшееся выше, включает такие мощные элементы, как объекты массивов, интерфейсы к стандартным математическим библиотекам, и многое другое. Расширение NumPy - за счет интеграции с математическими библиотеками, написанными на компилирующих языках программирования - превращает Python в сложный, но удобный инструмент программирования математических вычислений, который зачастую может заменить существующий программный код, написанный на традиционных компилирующих языках, таких как FORTRAN и C++.

Дополнительные инструменты математических вычислений для Python поддерживают возможность создания анимационных эффектов и трехмерных объектов, позволяют организовать параллельные вычисления и так далее. Например, популярные расширения SciPy и ScientificPython предоставляют дополнительные библиотеки для научных вычислений и используют возможности расширения NumPy.

Игры, изображения, искусственный интеллект,

XML роботы и многое другое

Язык программирования Python можно использовать для решения более широкого круга задач, чем может быть упомянуто здесь. Например:

Создавать игровые программы и анимационные ролики с помощью

системы pygame

Обмениваться данными с другими компьютерами через последовательный

порт с помощью расширения PySerial

Обрабатывать изображения с помощью расширений PIL, PyOpenGL,

Blender, Maya и других

Управлять роботом с помощью инструмента PyRo

Производить разбор XML-документов с помощью пакета xml, модуля xmlrp-

clib и расширений сторонних разработчиков

Программировать искусственный интеллект с помощью эмулятора нейро-

сетей и оболочек экспертных систем

Анализировать фразы на естественном языке с помощью пакета NLTK.

Можно даже разложить пасьянс с помощью программы PySol. Поддержку многих других прикладных областей можно найти на веб-сайте PyPI или с помощью поисковых систем (ищите ссылки с помощью Google или на сайте http://www.python.org).

Вообще говоря, многие из этих областей применения Python - всего лишь разновидности одной и той же роли под названием «интеграция компонентов». Использование Python в качестве интерфейса к библиотекам компонентов, написанных на языке С, делает возможным создание сценариев на языке Python для решения задач в самых разных прикладных областях. Как универсальный, многоцелевой язык программирования, поддерживающий возможность интеграции, Python может применяться очень широко.

Кстати, у вас проблемы с блоком питания ноутбука? Советуем вам купить блоки питания для ноутбука по очень доступным ценам. На сайте компании darrom.com.ua вы найдете блоки питания для любого ноутбука.

Python - мощный и простой для изучения язык программирования. В нём предоставлены удобные высокоуровневые структуры данных и простой, но эффективный подход к объектно-ориентированному программированию. Python интерпретируемый язык. Для запуска написанных программ требуется наличие интерпретатора CPython . Интерпретатор python и большая стандартная библиотека находятся в свободном доступе в виде исходных и бинарных файлов для всех основных платформ на официальном сайте Python http://www.python.org и могут распространяться без ограничений. Кроме этого на сайте содержатся дистрибутивы и ссылки на многочисленные модули третьих сторон и подробная документация.
Язык обладает чётким и последовательным синтаксисом, продуманной модульностью и масштабируемостью, благодаря чему исходный код написанных на Python программ легко читаем. Разработчики языка Python придерживаются определённой философии программирования, называемой «The Zen of Python». Её текст выдаётся интерпретатором по команде import this:

>>> import this The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren"t special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you"re Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it"s a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let"s do more of those!

В переводе это звучит так:

  • Красивое лучше, чем уродливое.
  • Явное лучше, чем неявное.
  • Простое лучше, чем сложное.
  • Сложное лучше, чем запутанное.
  • Плоское лучше, чем вложенное.
  • Разреженное лучше, чем плотное.
  • Читаемость имеет значение.
  • Особые случаи не настолько особые, чтобы нарушать правила.
  • При этом практичность важнее безупречности.
  • Ошибки никогда не должны замалчиваться.
  • Если не замалчиваются явно.
  • Встретив двусмысленность, отбрось искушение угадать.
  • Должен существовать один - и, желательно, только один - очевидный способ сделать это.
  • Хотя он поначалу может быть и не очевиден, если вы не голландец.
  • Сейчас лучше, чем никогда.
  • Хотя никогда зачастую лучше, чем прямо сейчас.
  • Если реализацию сложно объяснить - идея плоха.
  • Если реализацию легко объяснить - идея, возможно, хороша.
  • Пространства имён - отличная штука! Будем делать их побольше!

Python - активно развивающийся язык программирования, новые версии выходят примерно раз в два с половиной года. Вследствие этого и некоторых других причин на Python отсутствуют стандарт ANSI, ISO или другие официальные стандарты, их роль выполняет CPython.

История создания языка

Разработка языка Python была начата в конце 1980-х годов сотрудником голландского института CWI . Распределённой ОС Amoeba требовался расширяемый скриптовый язык для которой Гвидо ван Россум и создал Python. Новый язык позаимствовал некоторые наработки для языка ABC, который был ориентирован на обучение программированию. В феврале 1991 года Гвидо опубликовал исходный текст в ньюсгруппе alt.sources. Название языка произошло не от вида пресмыкающихся. Автор назвал язык в честь популярного британского комедийного телешоу 1970-х «Летающий цирк Монти Пайтона». Тем не менее эмблему языка изображают змеиные головы. После длительного тестирования, вышла первая версия Python 3.0. На сегодня поддерживаются обе ветви развития (Python 3.x и 2.x).

Python создавался под влиянием множества языков программирования: Modula-3, С, C++, Smalltalk, Lisp, Fortran, Java, Miranda, Icon. Несмотря на то, что Python обладает достаточно самобытным синтаксисом, одним из принципов дизайна этого языка является принцип наименьшего удивления.

Стандартная библиотека

Богатая стандартная библиотека является одной из привлекательных сторон Python. Здесь имеются средства для работы со многими сетевыми протоколами и форматами Интернета. Существуют модули для работы с регулярными выражениями, текстовыми кодировками, мультимедийными форматами, криптографическими протоколами, архивами. Помимо стандартной библиотеки существует множество библиотек, предоставляющих интерфейс ко всем системным вызовам на разных платформах.
Для Python принята спецификация программного интерфейса к базам данных DB-API 2 и разработаны соответствующие этой спецификации пакеты для доступа к различным СУБД: Oracle, MySQL, PostgreSQL, Sybase, Firebird (Interbase), Informix, Microsoft SQL Server и SQLite.
Библиотека NumPy для работы с многомерными массивами позволяет достичь производительности научных расчётов, сравнимой со специализированными пакетами. SciPy использует NumPy и предоставляет доступ к обширному спектру математических алгоритмов. Numarray специально разработан для операций с большими объёмами научных данных.
Python предоставляет простой и удобный программный интерфейс Си API для написания собственных модулей на языках Си и C++. Такой инструмент как SWIG позволяет почти автоматически получать привязки для использования C/C++ библиотек в коде на Python. Инструмент стандартной библиотеки ctypes позволяет программам Python напрямую обращаться к динамическим библиотекам, написанным на Си. Существуют модули, позволяющие встраивать код на С/C++ прямо в исходные файлы Python, создавая расширения «на лету».
Python и подавляющее большинство библиотек к нему бесплатны и поставляются в исходных кодах. Более того, в отличие от многих открытых систем, лицензия никак не ограничивает использование Python в коммерческих разработках и не налагает никаких обязательств кроме указания авторских прав.

Сферы применения

Python - стабильный и распространённый язык. Он используется во многих проектах и в различных качествах: как основной язык программирования или для создания расширений и интеграции приложений. На Python реализовано большое количество проектов, также он активно используется для создания прототипов будущих программ. Python используется во многих крупных компаниях.
Python с пакетами NumPy, SciPy и MatPlotLib активно используется как универсальная среда для научных расчётов в качестве замены распространенным специализированным коммерческим пакетам Matlab, IDL и др.
В профессиональных программах трехмерной графики, таких как Houdini и Nuke, Python используется для расширения стандартных возможностей программ.

Источники

Презентации

Домашнее задание

Подготовить сообщения:

  • Python как инструмент ученых
  • Python и Ruby (сравнение)
  • Python и WEB
  • Создание оконных приложений с помощью Python и графических библиотек (wxPython, PyQt, PyGTK и др.)

Существует множество областей применения Python, но в некоторых он особенно хорош. Разбираемся, что же можно делать на этом ЯП.

Основные отличия:

  • Flask обеспечивает простоту, гибкость и полный контроль над проектом. Он позволяет пользователю самостоятельно решать, как реализовывать те или иные вещи.
  • Django – это сервис типа «все включено». Из коробки в нем уже есть админ-панель, интерфейсы баз данных, ORM (объектно-реляционное отображение) и структура каталогов для ваших проектов.

Что выбрать?

  • Выбирайте Flask, если хотите получить больше опыта и возможностей для обучения. Или в том случае, если вам нужен максимальный контроль над всеми используемыми компонентами, например, базами данных.
  • Выбирайте Django, если вас интересует конечный продукт. Особенно, если вы работаете с простыми приложениями, такими как новостной сайт, магазин, блог, и хотите, чтобы каждая задача решалась одним предельно ясным способом.

Другими словами, Flask – это, возможно, лучший выбор для начинающего разработчика, так как он содержит меньше компонентов. Кроме того, его стоит выбрать, если необходима тонкая настройка проекта.

Flask из-за своей гибкости лучше подходит для создания REST API .

С другой стороны, если стоит задача сделать что-то просто и быстро, вероятно, стоит выбрать Django.

Data Science: машинное обучение, анализ данных и визуализация

Прежде всего, следует разобраться, что такое .

Предположим, что вы хотите разработать программу, которая будет автоматически определять, что изображено на картинке.

Например, предлагая ей это изображение, вы хотите, чтобы программа опознала собаку.

А здесь она должна увидеть стол.

Возможно, вы думаете, что для решения этой задачи можно просто написать код анализа изображения. Например, если на картинке много светло-коричневых пикселей, делаем вывод, что это собака.

Или вы можете научиться определять на изображении края и границы. Тогда картинка с большим количеством прямых границ, вероятно, окажется столом.

Однако это довольно сложный и непродуманный подход. Что делать, если на фотографии изображена белая собака без коричневых пятен? Или если на картинке круглый стол?

Здесь вступает в игру машинное обучение. Обычно оно реализует некоторый , который позволяет автоматически обнаруживать знакомый шаблон среди входных данных.

Вы можете предложить алгоритму машинного обучения, скажем, 1000 изображений собаки и 1000 снимков столов. Он выучит разницу между этими объектами. Затем, когда вы дадите ему новую картинку со столом или собакой, он сможет определить, что именно на ней изображено.

  • scikit-learn из коробки имеет несколько встроенных популярных алгоритмов обучения;
  • TensorFlow – это более низкоуровневая библиотека. Она позволяет создавать пользовательские алгоритмы.

Новичкам в машинном обучении лучше начать со scikit-learn. Более опытным разработчикам, которые столкнулись с проблемами эффективности, стоит присмотреться к TensorFlow.

Как изучать машинное обучение?

Настоящие аналитики, например, в Google или Microsoft, делают то же самое, только их работа более сложная и комплексная.

Они используют язык запросов SQL, чтобы извлекать данные из баз. Затем для анализа и визуализации применяются специальные инструменты, например, Mathplotlib (для Python) или D3.js (для JavaScript).

Способы применения Python для анализа и визуализации данных

Одна из самых популярных библиотек для визуализации – Mathplotlib .

Новичкам следует начинать обучение с нее по двум причинам:

  • низкий порог вхождения;
  • освоение Mathplotlib позволит в будущем быстрее разобраться в более сложных библиотеках, основанных на ней, например, seaborn .

Как изучать анализ данных на Python?

С недавних пор некоторые компании начали использовать для создания настольных приложений JavaScript. Например, десктопное приложение Slack было создано с помощью JavaScript-фреймворка Electron .

Преимущество написания настольных приложений на JavaScript заключается в том, что можно повторно использовать код веб-версии.

Python 3 или Python 2

Python 3 – это более современный и популярный выбор.

Пояснение о backend- и frontend-коде

Предположим, вы хотите сделать нечто, напоминающее Инстаграм.

Лучшие статьи по теме