Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 10
  • IPS матрица: что это такое — подробное руководство. Типы экранов в смартфонах: какой выбрать

IPS матрица: что это такое — подробное руководство. Типы экранов в смартфонах: какой выбрать

Продолжаем рубрику, посвященную тому, как правильно выбрать смартфон, который будет радовать пользователя. Мы уже поговорили : какие бывают, что лучше, плюсы и минусы. Сегодня речь пойдет о выборе экрана смартфона. Тема достаточно сложная и обширная, так как к настоящему времени существует немало технологий производства дисплеев, их защиты, кроме того, представлены они самых разных диагоналей, с разными соотношениями и так далее. Именно экран нередко становится камнем преткновения во время выбора смартфона. Оно и не удивительно. Дисплей – именно та часть устройства, с которой нам приходится работать больше. В случае неправильного выбора велика вероятность того, что экран причинит массу неудобств: некачественная картинка, низкая яркость, плохая чувствительность. Но не волнуйтесь, сегодня мы затронем каждый из аспектов, поведав вам обо всех тонкостях выбора экрана смартфона.

Тип матрицы смартфона

Начать стоит именно с типа матрицы. Во многом от выбора типа матрицы экрана будет зависеть качество. Итак, на сегодняшний день принято выделять три разновидности:

  1. TN+film
  2. AMOLED

Первые две основываются на жидких кристаллах, вторая – на органических светодиодах. Представлен каждый из типов несколькими подвидами (в случае с IPS более 20 различных), которые так или иначе встречаются в производстве панелей.

Некоторые из вас задаются вопросом: «А где TFT?». Из-за незнания некоторых ресурсов нередко эту аббревиатуру используют в качестве обозначения типа матрицы, что является неверным. Термином TFT обозначают тонкопленочные транзисторы, используемые для организации работы субпикселей. Применяются они практически в каждом из рассматриваемом типов матриц. Транзисторы также представлены несколькими разновидностями, одной из которых является LTPS (поликристаллический кремний). LTPS – относительно новый подвид, который выделяется меньшим потреблением энергии и более компактными размерами транзисторов, что отражается и на размерах пикселей. Как итог: большая плотность пикселей, более качественная и четкая картинка.

TN+film

Возвращаемся к матрицам. Большинство привычных нам матриц, как уже отмечалось, жидкокристаллические, то есть, LCD. Принцип заключается в поляризации света, который проходит через светофильтр, окрашиваясь в соответствующие цвета. Первая из разновидностей жидкокристаллических матриц – TN+film. С распространением «film» опустили, сократив название до «TN». Наиболее простой тип, который к сегодняшнему дню порядком устарел и используется лишь в самых дешевых смартфонах (да и то, надо еще найти). TN не может похвастаться хорошими углами обзора или контрастностью, обладает плохой цветопередачей.

В общем, TN при выборе экрана смартфона обходите стороной – тип устарел.

IPS

Далее идет IPS. Эта технология тоже немолода – возраст перевалил уже за 20 лет. Между тем, IPS-матрицы имеют наибольшее распространение на рынке смартфонов. Откройте любой интернет-магазин, выберите первый попавшийся смартфон и убедитесь в моих словах. Этот тип матриц представлен и в бюджетном сегменте, и в флагманском. Кроме улучшенных характеристик, если сравнивать с TN, IPS получили превеликое число разновидностей. Однако не стоит разбираться во всех – на рынке смартфонов главенство делят два типа: AH-IPS и PLS. Их создателями являются две крупнейшие фирмы Южной Корее да и всего мира: LG и Samsung соответственно. В чем разница? Ее практически и нет. Матрицы двух типов как братья-близнецы, поэтому можете не боясь выбирать смартфон с любой из них. Идентичность даже становилась поводом судебных разбирательств между компаниями.

IPS может похвастаться более широкими углами обзора, нежели TN, хорошей передачей цветов и высокой плотностью пикселей, что обеспечивает шикарную картинку. А вот энергопотребление примерно одинаковое – в любом случае используются для подсветки светодиоды. Так как разновидностей IPS-матриц существует довольно много, они разниться и в своих характеристиках. Разницу эту можно заметить даже «на глаз». Более дешевые IPS могут быть слишком блеклыми, либо напротив – иметь перенасыщенный цвет. Осложняет выбор экрана смартфона при этом тем, что производители зачастую умалчивают о типе матрицы.

Однозначно, при выборе между экраном TN и IPS предпочтение отдается последнему.

AMOLED

Еще более современный тип, который сегодня распространен, как правило, среди смартфонов высшего класса. AMOLED представлены органическими светодиодами, которые не требуют внешней подсветки, как в случае с IPS или TN, – они светятся сами. Уже на этом моменте можно выделить их первое достоинство – меньшие размеры. Далее – AMOLED представлен более насыщенными цветами. Особенно хорошо выглядит черный, во время отображения которого попросту затухает светодиод. AMOLED-дисплеи более контрастные, могут похвастаться широкими углами обзора и более низким энергопотреблением (есть нюансы). Прям сказка, не так ли? Но прежде чем выбирать смартфон с экраном AMOLED, вам стоит узнать о его недостатках.

Самым главным минусом принято считать меньший срок службы по сравнению с IPS. Через определенный срок (как правило, уже через три года наблюдаются изменения в цвете), в среднем через 6-10 лет начинают «выгорать пиксели». Причем особенно подвержены выгоранию яркие тона, поэтому пользователи нередко применяют темные темы оформления, дабы продлить срок службы. Кроме того, на энергопотребление в значительной мере сказывается яркость цветов на экране. Если отображается яркая картинка в светлых тонах, то AMOLED потребляет больше энергии, нежели IPS. Наконец, матрицы на основе органических светодиодов дороже в производстве.

Как бы то ни было, это не отменяет технологичность и качество AMOLED. Болячки в виде «выгорающих пикселей» постепенно вылечиваются, а также появляются подвиды матриц, которые становятся лучше. К примеру, Super AMOLED. Эта разновидность появилась семь лет назад, привнеся массу улучшений. Было уменьшено энергопотребление, увеличена яркость. Кроме того, исчезла воздушная прослойка между тачем и матрицей, что повысило чувствительность экрана, а также исключило попадание пыли.

AMOLED сегодня считается наиболее технологичными матрицами, которые активно развиваются. Если до недавних пор они использовались преимущественно в смартфонах Samsung, то сегодня их выбирает огромное число производителей смартфонов (практически каждый крупный бренд представил решение с AMOLED-экраном.

Конструктивные особенности экранов смартфонов

Но не только от типа матрицы следует отталкиваться при выборе экрана смартфона. Есть еще целая куча особенностей, от которых зависит итоговое качество картинки и ощущения от использования. Мы остановимся на наиболее важных моментах.

Воздушная прослойка

До не давних пор экраны всех смартфонов были представлены двумя составляющими: сенсорный слой и сама матрица. Между ними оставалась воздушная прослойка, толщина которой зависела напрямую от производителя. Естественно, чем слой тоньше, тем лучше. Компании регулярно уменьшали прослойку воздуха, делая качество картинки выше, а углы обзора – шире. Относительно недавно удалось полностью избавиться от воздушной прослойки благодаря технологии OGS. Теперь сенсорный слой и матрица соединились воедино. Несмотря на существенное повышение качества, есть и очевидный недостаток. В случае повреждения OGG-экрана, заменять его придется полностью, в то время как в дисплеях с воздушным слоем, удар на себя принимает лишь стекло.

Как бы то ни было, OGS-экраны выбирает все больше производителей. Да и вам мы советует отдавать предпочтение этой технологии. Поверьте, не стоит беспокойство о сложном ремонте тех чувств, которые вы испытаете при эксплуатации подобного дисплея.

Относительно недавний тред, который привнесла на рынок компания Samsung со своим флагманом Galaxy S6 Edge (также был Galaxy Note, но там загнули только один край). Южнокорейский производитель продолжить развивать идею и в последующих смартфонах, а вот остальные фирмы не слишком-то и разделили задумку. Сгибанию компания подвергает правую и левую грань устройств – экран как бы наплывает на торцы. Это делается не только ради эффектного внешнего вида, но и для удобства пользователя. Сюда выносятся дополнительные функции, здесь же могут отображаться уведомления. Увлекательная особенность, но далеко не всем нужная.

Наиболее удачно реализовать изогнутый дисплей удалось Samsung, поэтому, если интересна такая конструкция, то советуем рассматривать именно решения южнокорейского бренда.

Еще более свежий тренд – экраны без рамок. Прародителем является компания Sharp, которая показала первый безрамочный смартфон еще в 2014 году, но пользователей привлек безрамочный Mi Mix, показанный в 2016 году. К лету 2017 года целый ряд компаний заявил о замысле выпустить подобные гаджеты. Сегодня рынок стремительно наполняется , причем самые новые модели стоят менее 100 долларов.

К настоящему моменту есть несколько вариаций экрана без рамок: вытянутые дисплеи, у которых уменьшены рамки сверху и снизу; привычные дисплеи, лишенные рамок с трех сторон (кроме нижней). К первому типу относится Samsung Galaxy S8 пара смартфонов от LG (G6 и ). Ко второму – , Doogee Mix, Xiaomi Mi Mix и многие другие, чьи ряды постоянно пополняются.

Безрамочные смартфоны выглядят действительно здорово, а невысокая стоимость дает возможность каждому опробовать современные технологии.

Известная компания Apple в iPhone 6S представила новую технологию на момент выхода – 3D Touch. С ней экран стал реагировать не только на касания, но и на силу нажатия. Технология стала использоваться, как правило, для совершения каких-либо быстрых действий. Также 3D Touch позволил с большим комфортом работать с текстом, рисовать (кисть реагирует на силу натиска) и прочее. Функция не стала чем-то совершенно необычным, но своего пользователя нашла. Позже подобная технология появилась 6, также была заявлена в .

Тип сенсорных экранов

Не особенно важный критерий при выборе экрана смартфона, но, тем не менее, чуть остановимся на нем. Существует несколько типов сенсорных дисплеев: матричный (очень-очень редкий) резистивный и емкостной. Резистивные экраны до недавних пор были распространены повсеместно, однако сегодня представлены лишь в очень редких и дешевых смартфонах. Этот тип отличается тем, что реагирует на любые касания: пальцем, ручкой, хоть другим телефоном управляйте. Он поддерживает лишь одно касание, работает не всегда точно. В общем и целом, устаревший тип.

Емкостные экраны в значительной мере превосходят своих предшественников. Они уже поддерживают более одного одновременного касания, отличаются лучшей чувствительностью, гораздо точнее работают. При этом их производство обходится дороже.

Как ни крути, но от резистивных экранов в смартфонах подавляющее большинство компаний отказалось. И это к лучшему. К тому же, стоимость емкостных постоянно понижается, что позволяет производителям устанавливать их в самые дешевые смартфоны.

Еще одним важным аспектом при выборе экрана смартфона является число одновременных касаний. От этого параметра зависит то, какие операции вы сможете производить на дисплее. Первые смартфоны, оснащаемые резистивными экранами, ограничивались одним одновременным касаниям, чего не всегда было достаточно. Экраны современных смартфонов поддерживают зачастую 2, 3, 5 или 10 одновременных касаний. Что дает большое число одновременных касаний:

  • Масштабирование и зуммирование. Одна из первых функций, которая появилась в iPhone – первом смартфоне с поддержкой двух одновременных касаний. Так, можно уменьшать или увеличивать изображения, сводя или разводя пальцы на экране.
  • Управление жестами. Несколько пальцев дают возможность задействовать различные жесты.
  • Управление в играх. Большинство современных игр требуют задействование одновременно нескольких пальцев.

Не стоит гнаться за поддержкой 10 одновременных касаний, если вы не играете на смартфоне. Подавляющему числу пользователей вполне достаточно 5 касаний, а еще менее требовательные не будут испытывать дискомфорта и с 2.

Значимые при выборе экрана смартфона параметры, идущие рука об руку. Диагональ дисплея отражает его размеры в дюймах.

Дюйм соответствует 2.54 сантиметрам. К примеру, диагональ экрана 5-дюймового смартфона в сантиметрах составляет 12.7 сантиметров. Обратите внимание : диагональ измеряется от угла до угла экрана, не затрагивая рамки.

Какую диагональ экрана выбрать? На этот вопрос вам придется ответить самостоятельно. Рынок современных смартфонов предлагает самые разные диагонали, начиная примерно с 3.5-4 дюймов, заканчивая практически 7 дюймами. Есть и более компактные варианты, но их в расчет можно не брать – работать с миниатюрными иконками не очень удобно. Наилучший способ выбрать диагональ – лично подержать смартфон в руках. Если вам комфортно пользоваться одной рукой, значит, диагональ «ваша».

Рекомендовать конкретные цифры нельзя и потому, что у каждого человека разный размер руки, длина пальцев. Одному и 6-дюймовым пользоваться комфортно, другим – и 5 дюймов много. Также стоит учитывать, что смартфоны с одинаковой диагональю могут быть разных размеров в общем. Простой пример: 5.5-дюймовый сопоставим с 5-дюймовой моделью с обычными рамками. Поэтому при выборе экрана смартфона желательно еще и толщину рамок брать в расчет.

Как бы то ни было, наблюдается тенденция увеличения диагоналей экрана. Если в 2011 году подавляющее большинство пользователей ограничивалось 4 дюймами, то в 2014 году наибольший процент принадлежал 5 дюймам, сегодня рынок захватывают решения с 5.5 дюймами.

С разрешением ситуация обстоит попроще.

Разрешение отражает количество пикселей на единицу площади. Чем больше разрешение – тем качественнее картинка. Опять же, одинаковое разрешение по-разному выглядит на двух отличных диагоналях. Здесь же стоит упомянуть о плотности пикселей на дюйм, которая обозначается аббревиатурой PPI. Здесь то же правило, что в случае с разрешением: чем выше плотность – тем лучше. Правда, в точной цифре специалисты не сходятся: ряд утверждает, что комфортное значение начинается с 350 PPI, другие приводят большие цифры, третьи – меньшие. При этом стоит помнить, что человеческое зрение очень индивидуально: кто-то ни пикселя не увидит и при 300 PPI, а другой и при 500 PPI найдет к чему придраться.

  • при диагонали до 4-4.5 дюймов большинство смартфонов получают разрешение 840х480 пикселей (примерно 250 PPI);
  • от 4.5 до 5 дюймов хорошим выбором является HD-разрешение (1280х720 точек) (плотность составляет от 326 до 294 PPI)
  • более 5 дюймов – стоить смотреть в сторону FullHD (1920х1080 пикселей) или еще более высоких разрешений

Последние смартфоны Samsung и ряд моделей от других компаний получают разрешение 2560×1440 точек, что обеспечивает высокую плотность пикселей и четкую картинку. Недавний флагман от Sony и вовсе был представлен с разрешением экрана 4К, что при 5.5 дюймов гарантирует рекордные 801 PPI.

Покрытие экрана

До недавних пор экраны мобильных устройств покрывались обычным пластиком, который быстрый царапался, искажал цветопередачу, да и тактильно ощущался не очень. На смену пришло стекло, которому нипочем завалявшиеся в кармане ключи. Сейчас на рынке представлено ни одна разновидность стекол, которые отличаются прочностью и, соответственно, ценой. Особую популярность сегодня снискали 2.5D-стекла, изогнутые с краев. Они не только гарантируют высокую надежность, но и придают смартфону более стильный вид.

Кроме того, экраны современных смартфонов обладают специальным жирооталкивающим покрытием (олеофобный слой), который обеспечивает хорошее скольжение пальца, а также предотвращает появление пятен. Чтобы определить наличие олеофобного слоя, достаточно поместить на экран каплю воды. Чем лучше капля сохраняет форму (не растекается), тем качественнее слой.

Естественно, качество олеофобного слоя и стекла сказываются на стоимости смартфона. Вы вряд ли найдете бюджетную модель, которая сможет похвастаться таким же прочным стеклом, как у флагманского решения. Сегодня наиболее популярным производителем защитных стекол является компания Corning, линейка которой заканчивается Gorilla Glass 5.

Дополнительный экран

Если одного дисплея вам мало, то ряд компаний предлагает смартфоны с дополнительными экранами. Они, как правило, небольшие, а служат для вывода уведомлений. А YotaPhone 2, известный многим, предлагает второй E-link дисплей, занимающий всю тыльною сторону, на котором удобно читать. В модельном ряду LG есть решения с небольшим экраном, отображающим уведомления. Недавно подобным смартфоном с дополнительным экраном отметилась и Meizu со своим флагманом .

Второй экран – довольно-таки своеобразная фишка, которая нужна далеко не каждому. Тем не менее, своего пользователя подобные смартфоны находят, да причем и не одного.

Заключение

Что ж, вроде рассказали обо всех тонкостях выбора экрана смартфона. Материал получился довольно обширным, надеемся, ответы на свои вопросы найдет каждый. Не стоит гнаться за самым дорогим экраном, но и слишком экономить противопоказано – ищем ту самую золотою середину. Хотя нынешний рынок мобильной электроники и сам вас направит в нужное русло, указав на то, что популярно и востребовано. Сегодня значительно ниже риск наткнуться на некачественный дисплей, который будет тупить при нажатиях, производители существенно подняли планку качества. Даже компании третьего эшелона в своих ультрабюджетных смартфонах используют вполне добротные матрицы. Ну, а нам лишь остается пожелать вам удачи в выборе.

Кстати, линейка статей о критериях правильного выбора не заканчивается. Мы уже рассказали о том, ознакомьтесь. Скоро появятся материалы на тему выбора процессора и камер, так что подпишитесь на уведомления и группу «Вконтакте».

Размер матрицы имеет большое значение, но вначале поговорим о принципе действия матрицы фотоаппарата, и таких её характеристиках, как разрешение, "шумность" и светочувствительность.

Матрица фотоаппарата

Принцип действия матрицы
Матрица (сенсор, фотодатчик) это устройство фотокамеры, где получается изображение. Собственно, это аналог фотоплёнки, или плёночного кадра. Как и в нём, лучи света, собранные объективом, "рисуют" картинку. Разница в том, что на плёнке эта картинка хранится, а на датчиках матрицы под действием света возникают электрические сигналы, которые обрабатываются процессором камеры, после чего изображение сохраняется в виде файла на карту памяти. Сама матрица фотоаппарата представляет собой специальную микросхему с фотодатчиками-пикселями (фотодиодами). Именно они при попадании света генерируют сигнал, тем больший, чем больше света попадает на этот датчик-пиксель.

В чём принципиальная разница цифровой и плёночной фотографии? Это электроника против химии, скажет один. Цифра против плёнки, добавит другой. Но это не исчерпывающие ответы! Фотоплёнка совмещает место рождения снимка и место его хранения. Матрица фотоаппарата тоже рождает изображение, но не хранит его. Функцию хранения снимков в цифровой фотографии выполняет карта памяти.

Разрешение матрицы
Итак, мы уже выяснили: матрица фотоаппарата состоит из датчиков пикселей. От количества этих пикселей зависит разрешение (детализация изображения), размер будущей фотокарточки и, к сожалению, уровень шумов. Чем больше пикселей, тем выше детализация. Например, на матрице расположены 4928 точек по ширине и 3264 по высоте. Если перемножить ширину на высоту то получим 16 084 992 (примерно 16 миллионов) пикселей. В этом случае говорят "фотокамера имеет 16 мегапикселей", "разрешение сенсора 16 Мп" и т.д. Вот как выглядит матрица фотоаппарата, если снять объектив и поднять зеркало:

Кстати, хранить камеру в таком виде категорически не рекомендую. Если пыль попадёт на матрицу, то это не лучший день в буднях фотографа:)

Что такое шумы

Кто думает что шум — это завывание автомобиля под окнами, или грохот весенней грозы, тот жестоко заблуждается! Цифровые шумы — это аналог плёночной зернистости, а измеряется такой шум отнюдь не в децибелах (как можно подумать:). Кто снимал плёнкой, тот может этот абзац сразу пропустить, ибо на вопрос "что такое шумы" он уже получил ответ! Остальным советую всё же дочитать абзац до конца:)

Так что такое шумы? Это цветные искажения, похожие на разноцветные "крапинки", возникающие при съёмке в условиях сложного освещения. Особенно хорошо шумы заметны на тёмных участках фотоснимка, на заднем плане, на объектах находящихся не в фокусе. Они здорово портят снимок, делая его неестественным и никакие шумодавы, встроенные в камеру не в состоянии побороть это зло. Победа обычно достигается ценой потери детализации и уничтожения плавности цветовых переходов фотографии. Матрица из года в год совершенствуется, алгоритмы шумодавов тоже, а сам цифровой шум как был, так и остался. Причин появления данного дефекта немало: начиная от повышения сигнала на датчиках матрицы (чем меньше матрица и её датчики — тем больше шумов!) и кончая нагревом камеры с длинной выдержкой экспозиции.

Примеры вы, конечно, увидите ниже (я обещаю!), тем более, что пора перейти к главной причине их появления, а точнее — усиления шума. Причина эта — повышение фотографом светочувствительности матрицы, её мы рассмотрим более подробно.

Светочувствительность

Светочувствительность матрицы складывается из светочувствительности всех её фотодатчиков-пикселей. Поскольку фотографы бывают как натуры поэтические, так и технофилы, то дадим сразу два определения светочувствительности:

1. Светочувствительность — чудесное свойство фотографического материала рождать изображение с помощью света.

2. Светочувствительность — это примитивная способность фотодатчиков матрицы генерировать электрический заряд под действием световой составляющей электромагнитного излучения:)

Зачем же нужно повышать светочувствительность? Качество снимка — не только (и не столько!) мегапиксели, но и натуральные цвета. А это уже зависит от размеров датчиков-пикселей. Чем больше их собственный размер, тем больше света попадает на датчик, тем чище и естественней будут цвета и меньше цифровые шумы. При слабом освещении выдержка получается длинной и тогда, ввиду угрозы смаза снимка, обычно повышают светочувствительность фотоматериала (светочувствительность обозначают в единицах ISO). В плёночной фотографии для этого меняют плёнку, а цифровая фотокамера проще: ISO меняется в настройках самого фотоаппарата. В мыльницах — только автоматически, в камерах с ручными настройками — либо автоматически, либо задаётся фотографом.

В компактах обычные значения от 50 до 3200-6400 единиц ISO (было до 400 в 2007 г.), в зеркалках, как правило, от 100 до 6400-25600 и даже ещё выше (в 2007 г. было всего 1600). Сегодня это нормальные цифры, которые определены размером и другими характеристиками матрицы — при этом, чем больше размер — тем больше светочувствительность. На бОльшие значения ISO вряд ли стоит серьёзно обращать внимание, разве что только у "совсем топовых" моделях зеркалок. Цифирь растёт, а от шума всё равно никуда не деться: шумела матрица и будет шуметь:)

Матрица цифрозеркалок имеет след. типичные значения светочувствительности:

100; 200; 400; 800; 1600; 3200; 6400; 12800; 25600; 51200

а бывают и больше, найдите закономерность и цифровой ряд можно легко продолжить самостоятельно:)

Светочувствительность в цифровом фотоаппарате повышают для возможности снимать с более короткой выдержкой (или более прикрытой диафрагмой).

А если говорить проще — при плохом освещении.

Но какое же ISO фотографу нужно выставлять при съёмке? Если позволяет выдержка, то минимальное.

А если выдержка не позволяет? Вот тогда и приходиться повышать светочувствительность матрицы фотоаппарата. В принципе, ставить по максимальному значению было бы превосходно, если не один очень неприятный момент: с ростом ISO цветных искажений обычно становятся ещё больше.
Вот пример шумов матрицы старинного компакта (2003 г.) в условиях сложного освещения (тёмный коридор, с отсветом тусклой лампочки) на датчиках матрицы размера 1/1.8"" (7.2 х 5.3 мм.) Без применения вспышки было сделано 4 снимка: со светочувствительностью в 50, 100, 200 и 400 единиц (для получения такой же экспозиции выдержка укорачивалась по мере увеличения ISO). Снимки лучше увеличить:

ISO-50, выдержка 2 с. ISO-100, выдержка 1 с.
ISO-200, выдержка 1/2 с. ISO-400, выдержка 1/4 с.

Итак, повысив чувствительность до 400 единиц, нам удалось укоротить выдержку с 2-х до 1/4 сек., т.е. практически в 8 раз! Отлично, не правда ли? Всё хорошо, если не думать о том, что 1/4 тоже недостаточно для съёмки без штатива. Но ведь в других случаях укорачивание выдержки в 8 раз реально поможет, например, с 1/10 до 1/80 сек. Дело сейчас не в этом. Действительно, всё хорошо, если не обращать внимания на шумы. И если на ISO-50 их почти нет, а на 100 они малозаметны, то уже на ISO-200 шумы видны вполне отчётливо. Впрочем, некоторым и это покажется приемлемым, а вот на ISO-400 цветная мозаика становятся неприятной, а для кого то совсем невыносимой. Чтобы ясно представить различие посмотрите увеличенные центральные части снимков на iso-50 и iso-400. Как говорится, почувствуйте разницу!

Конечно, в условиях недостатка света лучше всего увеличивать выдержку, а не ISO. Но как правило, на длительных выдержках возникает шевелёнка (дрожание камеры в руках), а шевелёнка смажет картинку. В нашем примере использовался штатив, и потому на 2 сек. смаза не было. Но штатив не всегда удобно с собой таскать, в результате на мелких датчиках с шумами приходиться мириться, и количество мегапикселей тут ни чем не поможет. Даже наоборот, если нарастить их число на маленькой матрице, то это может привести к сильным шумам даже на чувствительности ISO-50.

Часто можно услышать вопрос: "почему на исо 400 компакт шумит больше, чем зеркалка — ведь исо то одинаковы?". Да, но сенсоры у них не одинаковы: зеркальная фотокамера имеет размер матрицы больше! И сравнивать единицы ISO в этом случае не совсем корректно, здесь можно сравнивать только уровень шума. И когда мы меняем в настройках камеры ISO, то меняем не совсем светочувствительность матрицы (чувствительность ей задана на заводе раз и навсегда!), а лишь уровень электрического сигнала — и, соответственно, шума. Поскольку чувствительность большей матрицы изначально выше, то и соотношение сигнал/шум получаем лучше! Надо учитывать, что с годами матрицы, конечно, совершенствуются, поэтому:

В более современных моделях либо шумов будет меньше, либо пикселей больше, либо цена ниже. И наоборот:)

По традиции мы будем (для удобства) говорить, что меняем светочувствительность фотоаппарата. Но, какие термины не используй, в любом случае ISO 3200 на компакте критики не выдерживает... :)

Давайте теперь посмотрим, как шумит зеркальная фотокамера. В следующих примерах использовалась Pentax K10D, совсем древняя (по цифровым меркам) модель, с максимальным ISO 1600), фотосъёмка велась ночью. Вот 4 снимка — на ISO-100, 400, 800 и 1600. Исо-200 я не включил, оно от 100 почти не отличается. Собственно, на таких маленьких картинках они все почти не отличаются! И здесь практически невозможно сравнить (и даже увидеть!) шумы на снимках показанных в пределах превьюшек 400 х 267 пикселей. Вот где сказывается размер матрицы! Поэтому, чтобы увидеть разницу рекомендую кликнуть по фото и увеличить размер. Смотреть шумы нужно в первую очередь на небе, здесь их легче найти:)

От чего зависят шумы? От размера матрицы и количества мегапикселей, от значения светочувствительности и даже от выдержки. Чем меньше матрица, больше мегапикселей, выше ИСО и длиннее выдержка, тем более заметны цветные вкрапления. Если матрица фотоаппарата сильно нагревается от длительной работы и/или жары, шумы могут стать заметнее, особенно на тёмных участках снимка. Поэтому нельзя говорить, что только одни мегапиксели, или повышенная чувствительность дают сильные шумы — при совпадении благоприятных факторов дефекты от шумов могут быть малозаметны глазу — даже на максимальном ИСО!

В одном из писем мне задали вопрос: "откуда материалы? будьте любезны ссылку в студию!" Но я не библиотекарь — всего лишь делюсь собственным опытом, который привык подтверждать снимками (кстати, тоже своими). Вот 2 фотографии, одна на ИСО 100, другая на ИСО 1600. Зеркальная фотокамера та же самая. Сделаны в светлое время суток при лёгком снегопаде. И короткой выдержке на ISO 100 и — особенно — на ISO 1600. Даже кликнув по снимку и загрузив полноразмерные кадры непросто заметить существенные различия!

Советую щёлкнуть по снимку и затем увеличить его, иначе разницу сразу не понять... без этого фотографии почти неразличимы... Напоминаю, речь идёт о чувствительности ISO-100 против ISO-1600! А что с выдержкой? Нам удалось укоротить её с 1/10 до 1/180 т.е. в 18 раз!! А это уже даёт возможность свободно снимать с рук без штатива с минимальными шумами. Впрочем, здесь мы могли уже на ISO-800 снимать запросто без штатива с выдержкой 1/90 сек, и даже на ИСО 400 с 1/45 сек — для широкого угла такой выдержки обычно хватает...

А вот эксперимент иного рода. Ниже вы видите 2 домашние фотографии. Ничего особенного, одна и та же ёлка, слева снимок без вспышки, справа со вспышкой. Увеличения не сделано, можете не кликать мышью — большой размер посмотрим чуть позже.

На маленьких изображениях никаких деталей не разглядеть, поэтому чуть ниже смотрим их увеличенные центральные части. Ну, что можно сказать? 1 фотография с очень сильными шумами, на второй шумы тоже заметны, но их на порядок меньше. В общем, предполагаем только три варианта. Сейчас автор нам скажет примерно следующее: вот, смотрите, какие разные шумы дают компакт и зеркальная фотокамера на светочувствительности матрицы в 400 единиц. А, возможно, и наоборот: сделано одной и той же камерой, но с разными ИСО. Или разными камерами с разными настройками:) Какой вариант более правильный?

На самом деле оба снимка сделаны одной и той же зеркальной фотокамерой и... с одинаковым iso! Мало того и выдержки не длинные, причём они вполне сопоставимы, 1/30 и 1/45 сек. Почему же такая разница в шумах? Всё дело заключается в освещении. На светлых участках фотографии шумов, как правило, меньше, а на тёмных — больше. Да, кстати, на обоих снимках светочувствительность 1600 единиц ИСО! Смотрим полный размер (при этом следует помнить, что цвет занавесок был изначально белым, да и после фотосъёмки он не пострадал)!


Вывод прост. Даже на одной и той же фотокамере (с одной и той же матрицей), один и тот же сюжет, снятый на одинаковой светочувствительности, может дать количество цветовых дефектов — шумов — совершенно разное!

Теперь мы видим, сколько много факторов влияет на шумы в цифровом фотоаппарате, кроме размера матрицы, до которого мы ещё доберёмся. А сколько рождается мифов и домыслов при сравнении снимков разных фотокамер на одинаковой светочувствительности, чтобы определить — какая из них меньше шумит!

Вот когда на форумах утверждают, что зеркалка фирмы А шумит больше зеркалки фирмы Б, то смех берёт, особенно если фотокамеры (и их матрица!) одной ценовой категории и года выпуска. Видимо, эти люди накупили объективов разных фирм, затем, время от времени, покупают самые последние зеркалки разных производителей, и тестируют их в одних и тех же условиях, чтобы доказать: моя камера (и фирма!) лучше всех... Ничего не поделаешь — это фоторелигия! Покажите эти незатейливые снимки спорящим до хрипоты, примирите их греховные страсти и развейте заблуждения во избежание религиозного кровопролития:)

Однако в случае появления новых фотокамер (точнее новых матриц!) качество снимка на больших ИСО может действительно улучшиться.

Со временем технологии развиваются, матрицы совершенствуются, реки текут, сады цветут, а шумов становится меньше. Их было бы ещё меньше, если производитель попутно не наращивал количество мегапикселей (датчиков)! Это возможно только за счёт уменьшения собственных размеров этих датчиков — чтобы последние уместились на матрице. Это вроде нормально, цветопередача не становится хуже (иногда и лучше), а взамен мы получаем возможность увеличивать картинку. Правда, не совсем понятно, для чего пользователю нужна матрица, скажем в 20 Мп. Я не поверю, что все печатают огромные плакаты, большинство вообще ничего не печатает!

Приведу снимок сделанный Pentax K5-II, камера выпущена в 2012 году на матрице высокой чувствительности. Данная матрица и сейчас неплохо смотрится по фотошироте и уровню шумов при высоких ISO. Если бы не нарастили количество датчиков, уменьшив их размер — шумов было ещё меньше, а счастья больше!

ИСО 3200, матрица о 16 головах миллионах датчиков
размер изображения 4928 х 3264

Но смысл есть даже в таком решении. В метро освещение всегда отвратительное, люди двигаются умом и толкаются, а снимок сделан с рук, без штатива. За счёт высокой ИСО удалось добиться выдержки 1/50 сек. Шумы на 3200, конечно, есть, но, если не печатать полным размером, их будет почти не видно, а на карточке 10х15 см их даже гурман не разглядит. Знаете, есть такая каста гурманов, которые считаются большими знатоками и ценителями фотографии по наличию отсутствия шумов, или присутствию их наличия:)

Я намеренно привёл снимок сделанный в боевых условиях, а не при студийном свете, которым иные авторы пользуются (вот странно!) при тестировании матрицы фотоаппаратов на шумы — в своих на редкость непредвзятых обзорах:)

При правильно выбранном освещении результаты будут, конечно, лучше. Даже при обычном дневном свете шумы могут оставлять благостное ощущение вседозволенности от "ненужности" вспышки и штатива. Смотрим полноразмерные кадры (7 Мб), сделанные вышеуказанным фотоаппаратом на ISO 3200 и 12800. Съёмка с рук, вспышка отключена, фокусировка по "глазу". Фото следует увеличить, чтобы разглядеть шумы. Легче всего их найти на фоне:)

Светочувствительность 3200

Светочувствительность 12800

Вообще то матрица данного фотоаппарата имеет максимальную чувствительность 51200, но я не хочу пугать читателя грязью на картинах, от чего ощущение вседозволенности плавно перетекает в унылую безысходность и даже чувство собственной неполноценности:)

По жизни уныние лéчится только водкой психиатрами ответственностью за тех, кого приручили (а мы пытаемся приручить фотографию). И вот, не взирая на огромные цифры чувствительности, возникает странное желание поставить самое низкое ISO и побороть длинную выдержку — применив штатив, вспышку, или иное освещение. Зачем нам матрица о 16 мегапикселях (их бывает гораздо больше) и грязные картины?

Хуже всего, когда мегапиксели наращивают в «новом» фотоаппарате на старой матрице, и делается это сугубо для мирового зла — маркетинга. Ну, это когда обманывают потребителя по закону:)

Теперь давайте посмотрим шумы от полнокадрового фотоаппарата Canon EOS 6D, матрица КМОП 35,8 х 23,9 мм, снимки предоставлены фотолюбителем из Красноярского края. Съёмка с рук без штатива.

Увеличив фото, мы видим, что ISO 6400 вполне рабочее, а шумы на 1600 и вовсе незаметны. Даже на ISO 25600 вполне можно печатать фотографии небольшого размера (скажем 10 х 15 см), поскольку чем меньше размер отпечатка, тем меньше видны дефекты на нём.

Смотреть шумы дело, конечно, увлекательное, но не стоит впадать в восторг, особенно если сравнить фотографии зеркалки и компакта. Да, зеркальная фотокамера шумит на ISO-800 меньше, чем компакт на ISO-400. Но не следует забывать 2 вещи:
1. все снимки компакта и зеркалки (кроме последних примеров) я делал со штатива — в этом случае ничто не мешает снимать компактом на минимальном ИСО с минимальными шумами.
2. ценность снимка определяется в первую очередь содержанием, а не техническим качеством:-)

Размер матрицы

Размер имеет значение:) Причём очень большое — это один из главных параметров цифровой фотокамеры. Тот самый который почему то не любят указывать производители. Размер матрицы складывается из размеров датчиков-пикселей и расстояния между ними. Именно от этих показателей в первую очередь зависит разрешение изображения, количество шумов, глубина резкости... Всё крайне важно для фотографа: любит он высокую детализацию, не жалует шумы и хочет иметь шикарную возможность менять диафрагмой глубину резкости. Последнее напрямую зависит от размера фотосенсора:

Чем больше размер матрицы в фотоаппарате — тем меньше глубина резкости на снимке!

Перевожу фразу на русский: мыльницы и компакты дают резкость от пупа до самого горизонта (и это хорошо!), а зеркалкой можно реально регулировать ГРИП, выделяя главный объект съёмки — что ещё лучше:) Размер матрицы говорит и об этом, и о габаритах самих фотокамер: у зеркалок вес и габариты больше.

Понятно, что большая матрица имеет более крупные пиксели, чем маленькая, если количество пикселей осталось прежнее. Перед нами условная схема 2-х матриц, первая от цифрокомпакта с не самой маленькой матрицей 7.2 x 5.3 mm (обозначение 1/1.8"), вторая от зеркальной камеры 23.7 x 15.6 mm (обозначение "APS-C" — Advanced Photo System type-C). На самом деле количество квадратиков-пикселей в реальных камерах гораздо больше, (например, 16 миллионов, а не 48 как здесь), но соотношения сторон на схеме для наглядности выполнены достаточно точно.

При одинаковой пиксельности (здесь, например, у обоих матриц 48 квадратиков-пикселей), площадь каждого пикселя у крупной матрицы больше, и соответственно, светочувствительность и цветопередача у зеркалки куда лучше (а шумов меньше!). Увеличить количество пикселей можно двумя способами — увеличить размер матрицы, а можно, наоборот, уменьшить площадь самих "квадратиков", чтобы их больше уместилось на прежнем размере матрицы. Первый путь дорогой, второй дешевле, так как не нужно увеличивать саму матрицу. Догадайтесь, по какому пути пройдёт производитель, чтобы гордо заявить: в нашей камере теперь не 10, а целых 20 мегапикселей!

Больше мегапикселей для детализации снимка, конечно, хорошо, а вот то, что при этом уменьшилась площадь каждого сенсора — очень плохо. В итоге народ вовсю скупает маркетинговые мегапиксели, никак не задумываясь об их происхождении. Вот примеры подобных матриц в 48 клеток и 192 клетки (мегапикселей стало в 4 раза больше!):

Понятно, что на второй схеме количество мегапикселей нарастили, уменьшив площадь каждого из них. А как ещё, если матрица осталась прежнего размера! И вот уже появляются компакты с 12 и даже с 16 Мп, превосходя в этом даже иные зеркалки. Например, зеркальная камера Nikon D50 имела всего 6 Мп — а этого хватало за глаза и за уши, если не печатать больших плакатов!

Цифровые камеры давно уже перешагнули "порог качества" по мегапиксельности. Раньше камера в 2 мегапикселя считалась профессиональной, а в 1 Мп — любительской, и этого одного мегапикселя явно не хватало для хорошей детализации. Но проблема давно ушла в небытие, а если говорить по большому счёту, то количество пресловутых мегапикселей теперь уже вообще не важно. Это количество давно уже стало избыточным даже в мыльницах. Зато появились другие проблемы! Наращивание избыточной детализации используется теперь больше в маркетинговых целях, а не для реального повышения качества.

Хитрые продавцы, а иногда и производители почти никогда не указывают размеры матриц в миллиметрах, используя вместо них непонятные обозначения в т.н. "видиконовых" дюймах, например 1/2.5", или 1/1.8". Смысл этих "попугаев" в том, что чем больше число в знаменателе, тем меньше матрица, что окончательно сбивает с толку неискушённого покупателя. Особенно того, кто прогуливал дроби на школьных уроках по математике:) На подсознательном уровне человек всегда страшиться непонятного, и окончательно запутавшись, он уже готов заглотить любую наживку продавца. И про понятные всем мегапиксели — чем больше, тем круче, и про цену — чем дороже, тем престижней, и про дизайн — "в новом модном корпусе оригинального цвета для стильных и успешных", и прочий бред... Ну а кривая роста психических заболеваний поднимается всё выше и выше, безмерно радуя, почему-то, лишь частных психиатров:)

Матрица. Размеры.
Модель камеры Обозначение в дюймах Размер матрицы мм Кроп
1. ФЭД плёнка 35 мм 36 x 24 1
2. Nikon "APS-C" 23.7 x 15.6 1.5
3. Pentax "APS-C" 23.5 x 15.7 1.5
4. Sony "APS-C" 23.6 x 15.8 1.5
5. Canon "APS-C" 22.3 x 14.9 1.6
6. Olympus 4/3 18.3 x 13.0 2
7. компакт 1" 12.8 x 9.6 2.7
8. компакт 2/3" 8.8 x 6.6 4
9. компакт 1/1.8" 7.2 x 5.3 4.8
10. компакт 1/2" 6.4 x 4.8 5.6
11. компакт 1/2.3" 6.16 x 4.62 6
12. компакт 1/2.5" 5.8 x 4.3 6.2
13. компакт 1/2.7" 5.4 x 4.0 6.7
14. компакт 1/3" 4.8 x 3.6 7.5

Повторюсь: совсем не обязательно помнить и держать в голове все эти сведения. Достаточно просто понимать, что число 1/1.8 больше, чем, скажем, 1/3, но значительно меньше размера APS-C. Здесь даже калькулятор не потребуется:)

Чтобы лучше представить эти дюймы, миллиметры, кропы и прочие цифроразмеры, смотрим картинку, наглядно изображающую соотношение размеров зеркальных и компактных фотокамер. Матрицы в мыльницах, как правило, имеют размер от 1/3" до 1/2" (самое "ходовое" и минимальное сейчас значение 1/2.3), в более дорогих и продвинутых цифрокомпактах от 1/1.8" и более. Это, конечно, весьма условное деление, но лучше сравнивать фотокамеры по размеру матрицы, нежели по мегапикселям. Большой прямоугольник показывает самый крупный размер, который бывает в 35-мм формате. Синий прямоугольник поменьше расскажет о кропнутых зеркалках, зёлёный — о формате 4/3, а самые маленькие 3 квадратика — это матрицы разного класса цифрокомпактов и мыльниц. Буква k означает кроп-фактор. Т.е. во сколько раз данная матрица меньше полного кадра.

Вам не надо учить все эти цифры наизусть, достаточно иметь примерное представление о том, что покупаете. Вот и посмотрите наглядно, какая реальная чувствительность (а не единицы ISO) вас ждут, какие будут шумы и каков вес с габаритами:) На больших датчиках меньше глубина резкости, нежели на малых, а значит легче добиться эффекта размытия заднего плана — почувствуйте это! И на большом размере матрицы объектив, поставленный на фотоаппарат, будет более широкоуголен, чем поставленный на обрезок APS-C ("обрезанный" полный кадр), а на обрезке — станет более длиннофокусным — прочувствуйте и сей факт! Да! Пропорции прямоугольников говорят именно об этом, а не только о кропах, пикселях, размерах матриц и прочей, далёкой от фотоискусства и творчества дребедени информации.

Кстати, эти прямоугольники говорят и о стоимости тоже! Когда авторитетно рассказывают, что цена зеркалки упала до размеров топовых компактов, то забывают сказать что это самая дешёвая зеркалка из любительского класса, и при этом не упоминают о разнице в цене топовых зеркалок и мыльниц нижнего диапазона за 2-3 тысячи рублей — а разница эта огромна:) В общем, смотрите и сравнивайте сами!

Меньше всего матрица в фотокамерах мобильных телефонах. Вот образчик рекламы от фотокамеры мобильника Тошибы:

"Toshiba объявила о том, что она обновила и расширила модельный ряд ПЗС матриц Dynastron для встраивания в мобильные телефоны и коммуникаторы. Две новые модели, 3,2-мегапиксельный сенсор ET8EE6-AS и 2-мегапиксельный ET8EF2-AS — существенный прогресс в уменьшении размеров ПЗС матриц для мобильных телефонов и прочих устройств, снабженных фотокамерой. Обе новые модели ПЗС матриц представляют собой существенный шаг вперёд в области миниатюризации при сохранении высокого разрешения. Сенсор ET8EE6-AS представляет собой 3.2-мегапиксельную ПЗС матрицу размером 1/3.2 оптического формата, превосходя предыдущее достижение компании — размер формата в 1/2.6 дюйма."
Кстати, уже появился ещё меньший формат — 1/4 дюйма.

Вот так — "существенный прогресс в уменьшении размеров ПЗС матриц"! Впрочем, для мобильных телефонов это актуально, громоздкий мобильный телефон никому не нужен, а фото в нём — необязательная дополнительная фишка. Мобильный телефон должен быть действительно мобильным! Но у нас речь идёт про фотокамеру — а в ней чем больше матрица, тем больше габариты и вес аппарата. Это естественно. А хороша ли маленькая камера? Кому как. Многим нравиться фотик, которое помещается в нагрудный карман. Однако, большой размер не все считают недостатком. Вес и ухватистость камеры обеспечивают её лучшее удержание в руках, в итоге меньше шевелёнка... Согласитесь, что держать двумя руками маленький фотоаппаратик неудобно, а одной надо и держать, и кнопку пуск нажимать — колебание камеры (и смаз снимка!) почти обеспечены. Что важнее? Ответ может быть таким: это всё таки фотоаппарат, а не мобильный телефон!

кропнутые зеркалки

Матрица у таких зеркалок куда больше, чем у компактов, но, тем не менее, эти зеркалки называют "фотокамера с кропнутой матрицей", камера с урезанным сенсором и даже обрезок...
Вы думаете матрицу "обрезали" чтобы уменьшить размер фотоаппарата, или сделать его дешевле? Нет, это просто попытка удешевить производство, а цену продаж оставить на том же уровне:) В общем, матрицы сделали меньшего размера чем плёночный кадр. На картинках изображён сенсор формата 4/3 (в основном это зеркалки Олимпус), а рядом формат APS-C — Nikon D50, Canon EOS 400D, Pentax K10D и многие другие. Первые в 2 раза мельче полнокадровых матриц, APS-C — меньше в 1.5-1.6 раза. Увы, такие фотокамеры меньше габаритами почему то не стали, чем плёночные зеркалки! Что ещё? Для камер APS-C нередко выпускают "цифровой" объектив с меньшей световой площадью покрытия, но можно использовать и старую "плёночную" оптику — если позволяет байонет (стыковочное крепление объектива с фотокамерой). При этом следует помнить — используя неавтофокусные объективы, придётся фокусироваться вручную.

зеркалки полнокадровые 36x24 мм

Больший сенсор имеют, как правило, очень дорогие профессиональные фотокамеры, у них размер матрицы — как у плёночного кадра: 36 х 24 мм. Интересно, что выпускать их начали позже цифромыльниц и ещё позже обрезанных цифрозеркалок. Для матриц с большей площадью требуется объектив, покрывающий эту площадь, в данном случае полнокадровый (например, плёночная оптика). А вот наоборот не выйдет:) Т.е. маленький объектив для кропнутых фотокамер на полноразмерной матрице использовать нельзя...


Мне часто задают вопрос: что происходит, когда в настройках фотоаппарата выбираем для съёмки меньшее количество мегапикселей. Улучшим ли тем самым качество изображения?

Разумеется, нет! Реальный размер матрицы (и каждого пикселя-датчика) от этого не увеличатся, даже не думайте. Вы просто уменьшаете настройками камеры количество точек ИЗОБРАЖЕНИЯ в файле (как в графическом редакторе на компьютере), а заодно потеряете возможность кадрирования или увеличения фотографии.
Взамен получите маленький размер файла, экономию места на карте памяти, а значит, возможность наснимать ещё больше — так много, чтобы вообще ни о чём не думать:)

Если ваше кредо в фотографии — как можно чаще жать кнопку затвора и получать большее количество взамен качества, то эта чудная функция создана именно для вас!


Итак, подведём итоги. Чем больше матрица, тем больше возможностей у камеры, как по цветопередаче, как по разрешению, так и по размерам печатного оттиска. Цена фотоаппарата в очень значительной степени зависит от матрицы.

Тип матриц

Под конец заметим, что фотоматрицы различаются не только по размерам, но и по типам. Бывают следующие типы:
— ПЗС-матрицы (CCD). Прибор с зарядовой связью, использующий светочувствительные фотодиоды. ПЗС был изобретен в 1969 г. и первоначально использовался как устройство памяти, но способность устройства получить заряд благодаря фотоэлектрическому эффекту, сделала применение ПЗС основным именно в этом направлении. ПЗС-матрицу выпускают и используют многие ведущие производители, особенно много здесь поработала компания Sony.
— КМОП-матрицы (CMOS). Эта технология использует транзисторы и отличается малым энергопотреблением. Микросхемы КМОП были выпущены ещё в 1968 году и вначале нашли применение в калькуляторах, электронных часах, и вообще в тех устройствах, где энергопотребление было критичным.
— Live-MOS матрица. Имеет возможность «живого» просмотра изображения. Активно разрабатывается компанией Панасоник, в зеркалках впервые была применена Олимпусом в 2006 г. (фотокамера Olympus E-330). В 2009 году зеркальные цифровые фотокамеры с возможностью визирования по ЖК-экрану имеют практически все крупные производители. В технических характеристиках эта возможность обычно называется «Live View».
Есть и другие, например, DX-матрица, Nikon RGB-матрица и иные виды фотосенсоров.

К тому же матрицы различаются по технологии получения цвета. Сам по себе датчик не воспринимает цвет, получая изображение с оттенками серого (больше света/меньше света), а для получения цветов используются цветофильтры. Например:
— матрицы с фильтром Байера
— матрицы Foveon X3
— 3CCD. Эта технология делит свет по спектру с помощью специальных призм на красный, зелёный и синий. Причём каждый из них направляется на отдельную матрицу (всем хороша система, кроме одного — больших габаритов!)

Чтобы достигать более яркого изображения с низким уровнем шума матрицы постоянно развиваются. Большинство технологических решений связано с уменьшением неиспользуемой поверхности датчика, оптимизацией управляющих сигналов и разработкой низкошумящих усилителей. Однако не следует боятся того, что скоро фотографы начнут запросто снимать мыльницей в кромешной тьме. Чтобы никто сильно не боялся, фирмы внедряют новые технологии очень постепенно, или вообще не внедряют и держат в секрете до тех пор, пока не высосут из потребителя все деньги за старые:) И совсем не смешно преступно, когда эта история касается не фототехники, а лекарств для умирающих от рака...

Мы не будем более подробно рассматривать типы датчиков их различия и различия цветофильтров. Это может быть очень важно производителям матриц и их технарям, но никак не фотографам, потому что на самих снимках никакой разницы заметно не будет. Я бы посоветовал фотолюбителям уделять больше внимания для видения (в первую очередь глазами!) интересных сюжетов и красивых ракурсов съёмки. Всё таки этот сайт задумывался для помощи начинающим фотографам, а не технарям!

Статья:

Съемка камерой мобильного телефона (смартфона). Параметры камер мобильных телефонов. Основные характеристики, проблемы и примеры дефектов на снимках . Как выбрать смартфон с хорошей камерой?

Предисловие

Съемка на камеру мобильного телефона (смартфона) прочно вошла в нашу жизнь. Многие пользователи смартфонов считают, что "обычный" фотоаппарат им уже просто не нужен, достаточно иметь смартфон с хорошей камерой.

Но вот вопрос - какую камеру смартфона считать "хорошей"? Или всегда ли она сможет заметить хотя бы простенькую "цифромыльницу"?

Давайте рассмотрим этот вопрос с точки зрения характеристик камер, их особенностей, а также типичных проблем и ошибок, приводящих к потере качества фотографий и видео, снятых с "мобильника". Постараемся это сделать без излишней научной "заумности", на простом и понятном языке.

При этом разделим параметры камер мобильных телефонов на две группы: параметры фотоматриц и параметры объективов.

Физические принципы цифровой фотографии

Физические принципы цифровой фотосъемки почти не отличаются от работы фотоэлемента из школьного курса физики. Свет, падающий на чувствительную поверхность (которая является первым электродом), выбивает из неё электроны, которые достигают второго электрода. В результате между ними возникает разность потенциалов, которая считывается и отправляется на обработку. А этот фотоэлемент является ни чем иным, как элементарным пикселем датчика изображения. Эти пиксели объединены в матрицу, а их количество представляет собой то самое число мегапикселей, которое мы видим на упаковке смартфона или фотоаппарата.
Правда, на самом деле пикселей там в три раза больше, потому что в цветной фотографии каждый пиксель образуют три датчика, чувствительных к разным цветам: красному, зеленому, синему (RGB в буржуйской терминологии).

Итак, всё с виду хорошо и гладко. Откуда же возникают дефекты изображения?

Объективные причины - электрические шумы в матрице и недостаток её динамического диапазона; а также погрешности объектива, формирующие на матрице неточную картинку реального мира.

Субъективные причины - "дрожание" камеры фотографа (особенно это серьезно при слабом освещении), ошибочная фокусировка, ошибки при выборе экспокоррекции и т.п.

В отдельных случаях дефекты изображения, возникшие вследствие реальных физических причин, усугубляются и программной обработкой, работающей временами по принципу "хотели, как лучше; а получилось...". :)

Параметры матриц, часть 1. Физический размер матрицы и количество мегапикселей.

Поскольку матрица цифровой камеры - не только датчик изображения, но и источник шумов, то параметры матриц будем рассматривать в тесной увязке с их влиянием на шум.

Итак, первые два параметра:

1. Размер матрицы.
2. Количество (мега)пикселей.

Размер матрицы определяется замысловатыми дробями вида, например, 1/2.7 (не путать с диафрагмой, имеющей немного похожее обозначение, вида F/2.7) .
В данном случае это соответствует диагонали матрицы в 6.27 мм, а размеры сторон 5.02 x 3.76 мм.
Как это перевести размер 1/2.7 в "нормальные" единицы? Эта дробь означает, что диагональ матрицы в 2.7 раза меньше, чем диагональ матрицы в видиконе диаметром 1 дюйм. Видикон - это древний электронно-лучевой прибор, применяемый в телевизионных камерах "ламповой" эпохи. И матрица в круглом 1-дюймовом видиконе была, естественно, меньше диаметра видикона и составляла чуть больше 16 мм (т.е. не точно 16 мм, имеются "разночтения"). Эти 16 мм и есть тот "видиконовый дюйм", от которого до сих пор рассчитываются параметры цифровых фотоматриц, хотя сами видиконы можно найти только в технических музеях. :)
Чем знаменатель дроби меньше, тем матрица крупнее и ЛУЧШЕ.

Теперь разберем, почему чем матрица крупнее - тем она лучше.

Шум в матрице определяется случайным (тепловым) движением электронов; а сигнал - интенсивностью светового потока, временем экспозиции (т.е. накопления заряда) и площадью светочувствительного элемента (пикселя). Соответственно, чем выше параметры, образующие сигнал, тем будет лучше соотношение сигнал/шум при прочих равных условиях.

Если хотя бы один из перечисленных параметров - низкий, то на изображении начинают "проступать" шумы в виде хаотично расположенных точек и пятен различной яркости и цвета. Так выглядит зашумленная фотография в условиях пониженного освещения:

Лучше этот эффект заметен при увеличении до 100% (фрагмент см. ниже). Шумы делают менее различимым изображение сфотографированных предметов:

Вернемся к вопросу о способах уменьшения шумов.
С интенсивностью светового потока и площадью пикселя все понятно, а как увеличить время экспозиции, не доводя изображение до пересвечивания? Очень просто - снижая чувствительность при съемке (чувствительность выражается в единицах ISO - 50, 100, 200, 400 и т.д. до 100000). Другое дело - что палка, как известно, "о двух концах". Увеличение времени экспозиции может привести к "размазыванию" изображения из-за движения объекта или "дрожания" камеры в руках; но мы пока рассматриваем проблемы в принципе. :)

Но размер пикселя определяется не только размером матрицы, но и количеством пикселей на матрице (грубо говоря, надо площадь матрицы разделить на число пикселей). Отсюда - следующий вывод: чем мегапикселей в матрице меньше, тем соотношение сигнал/шум лучше. Но при высоком уровне освещения даже и с мелким размером пикселя соотношение сигнал/шум будет неплохим. А при падении освещения преимущество будет за теми камерами, у которых пиксель крупнее.

Кстати, размер пикселя (точнее, расстояния между пикселями) уже достиг своего физического предела, который составляет 1 мкм. Дальнейшее уменьшение размера пикселя теряет смысл, поскольку длина световой волны составляет от 0.39 до 0.78 мкм; и при расстоянии между пикселями менее 0.78 мкм (красный свет), соседние пиксели будут показывать просто одно и то же.

По описанным выше причинам, потребителю надо иметь в виду, что зачастую количество мегапикселей имеет больше рекламный характер, чем реальную пользу. Практически, если в камере есть 12-13 мегапикселей, то это уже неплохо; но это - еще не гарантия, что всё будет хорошо - в дело вступит качество оптики. Если же в камере СОВРЕМЕННОГО смартфона количество мегапикселей менее 10, то, скорее всего это - дешевая камера, от которой не стоит ждать высокого качества снимков.

В то же время, если производитель - достаточно солидный и уважаемый (SONY, Asus, Samsung и т.д.), то и большое количество мегапикселей лишним не будет. По крайней мере, при ярком освещении.

Если есть сомнения, будет ли толк от большого числа мегапикселей, то лучше выбрать тот смартфон, у которого больше физический размер матрицы. А уменьшить количество мегапикселей на фото можно после можно уже и после съемки в графическом редакторе.

Вот такой это противоречивый параметр - количество мегапикселей.

Итог этой части наших исследований:

- Чем больше физический размер матрицы, тем лучше ВСЕГДА.
- Чем больше мегапикселей, тем тоже лучше, но только при хорошем качестве оптики и хорошем освещении в момент съемки.

Теперь - о дополнительных параметрах, включая технологические.

Параметры матриц, часть 2. Чувствительность и технологические особенности

Разберем еще такие вопросы:

1. Чувствительность в единицах ISO.
2. Технология с микролинзами.
3. Технология с обратной засветкой (Back-Side Illumination, BSI).

В старину чувствительность была физическим параметром фотопленки, который по ходу съемки никак меняться не мог.
В цифровых камерах величина чувствительности может задаваться вручную или автоматически. При назначении той или иной чувствительности на самом деле в фотоматрице никаких изменений не происходит. Просто изменяется коэффициент аналогового усиления сигнала с фотодатчиков перед подачей его на вход аналого-цифрового преобразователя (аналогично, например, регулировке громкости в плеерах).
Соответственно, и изменения соотношения сигнал/шум тоже не происходит, т.к. усиливаются одновременно и сигнал, и шум.

В чем же тогда вообще смысл упоминания чувствительности в параметрах камер?

Чем меньше нижний предел чувствительности, тем более качественные можно получить фотографии, по крайней мере, для неподвижных объектов. Механизм повышения качества прост: чем меньше чувствительность, тем больше выдержка (время накопления сигнала), и тем лучше соотношение сигнал/шум. Для хороших камер "мобильников" нижний предел обычно бывает 50 ISO.

А чем выше верхний предел, тем больше возможностей получить хоть какое-то изображение при слабом освещении (правда, вместе со всеми полагающимися шумами). Для хороших камер мобильных устройств верхний предел обычно составляет 3200...6400 ISO. Теоретически, ничто не мешает установить верхний предел и сколь угодно большим, но изображения в этом случае уже не будет - будут лишь шумы со смутными контурами предметов.

Технологические усовершенствования (микролинзы и матрицы "с обратной засветкой", BSI ) появились как борьба с одним из принципиальных недостатков фотоматриц: светочувствительные пиксели не могли занимать всю поверхность матрицы; поскольку, кроме них, на поверхности матрицы располагаются транзисторы и соединительные проводники.

Для устранения этих недостатков внедрили две технологических новинки. Сначала перед пикселями стали располагать собирающие свет микролинзы; а затем светочувствительные пиксели стали располагать не на той стороне подложки, где находятся проводники и транзисторы, а на обратной. В результате схематично современная фотоматрица выглядит "в разрезе" примерно так:

(изображение взято и з чешского раздела Википедии)

Итог второй части наших исследований:

- Пределы возможных значений чувствительности не принципиальны, но желательно, чтобы они были хотя бы в диапазоне 80...3200 ISO , либо в более широком в ОБЕ стороны (и вниз, и вверх).

Технологические особенности (микролинзы, матрица с обратной засветкой) сейчас используются практически для всех камер мобильных устройств, начиная со среднего ценового диапазона, и рассматривать их как преимущество смысла нет. Для устройств на "вторичном рынке" использование этих технологических особенностей может быть весомым аргументом "за".

Остальные параметры матриц в этой статье рассматривать не будем, так их очень много (десятки!), а производителями мобильных устройств они все равно не упоминаются.

Типовые дефекты снимков из-за проблем оптической системы

Хотя снаружи в камерах смартфонов и планшетов видно только одну очень маленькую линзу, на самом деле это - только вершина айсберга под названием "объектив". Объектив устроен очень сложно и имеет несколько линз и несколько диафрагм (подробнее - в статье "Устройство камеры смартфона"). Все эти "навороты" нужны для борьбы с геометрическими и цветовыми искажениями, а также для обеспечения равномерности фокусировки по полю матрицы.

Рассмотрим типовые примеры, что бывает, когда оптика камеры смартфона несовершенна.

Случай №1. Неравномерность цвета ("цветовое виньетирование"):


(кликнуть для увеличения)

Обратите внимание, что на фотографии центр снимка имеет явственный розовый оттенок, а края - зеленый. Но это - не единственная проблема этого снимка. Переходим к случаю №2.

Случай №2. Зоны нерезкости на снимке.

Если увеличить приведенный выше снимок до 100%, то можно заметить, что в правом верхнем углу "картинка" гораздо более "размыта", чем на всех остальных частях кадра. Посмотрим, для сравнения, на увеличенные до 100% фрагменты из левого верхнего угла и из правого верхнего:

Данная проблема является следствием элементарной геометрической "кривизны" в каком-то из элементов оптической системы. Причем дислокация зоны нерезкости и вообще её наличие могут меняться от экземпляра к экземпляру телефона одной и той же модели.

Но следует иметь в виду, что сам по себе факт снижения резкости по краям снимка еще не является дефектом. Такое явление свойственно почти всем камерам "мобильников", кроме самых дорогих. Дефектом является аномальное ухудшение резкости в какой-либо отдельной области снимка.

Два только что описанных дефекта никак не следуют из технических параметров камеры смартфона. Их можно обнаружить, только внимательно просматривая тестовые фотографии в обзорах устройств.

Параметры оптической системы

А теперь разберем те параметры оптической системы, которые производители смартфонов обычно указывают в технических характеристиках устройств.

Чаще всего таких параметров - немного, всего два: относительная диафрагма (светосила) и количество элементов оптической системы. Но бывает, что к ним еще добавляют фокусное расстояние объектива, угол зрения, величину оптического и электронного зума, и, иногда, еще какую-нибудь второстепенную "мелочевку".

Начнем с количества элементов оптической системы. Количество элементов, теоретически, чем больше - тем лучше; ибо каждый элемент должен как-то улучшать изображение. При этом надо помнить, что количество элементов не означает количество линз; в число элементов входят и диафрагмы. Но абсолютно прямой связи между числом элементов и качеством изображения всё-таки нет.

Насчет же первого из упомянутых параметров - относительной диафрагмы - поговорим поподробнее.

Относительная диафрагма обозначается буквой F и числом, получается выражение вида, например, F /1.8 . Это число обозначает, во сколько раз эффективное значение величины отверстия для прохождения света МЕНЬШЕ "идеального". Под "идеальным" понимается освещенность мишени объективом без потерь, диаметр которого равен фокусному расстоянию.

Поскольку в объективе всегда присутствуют потери, а также расстояние от передней линзы не совпадает с фокусным расстоянием объектива в целом, то значение F всегда больше 1. Причем, поскольку количество пропускаемого света пропорционально не линейному размеру, а площади отверстия, то оно уменьшается пропорционально КВАДРАТУ числа F/.

Принципиальное отличие диафрагмы в камерах мобильных устройств от "настоящих" фотоаппаратов состоит в том, что в мобильных устройствах она - не регулируется (т.е. фиксированная величина). А в настоящих фотоаппаратах она может физически изменяться за счет сжатия или расширения образующих её лепестков.

С точки зрения качества фотоснимков, чем число в знаменателе выражения F/x.x у камеры "мобильника" меньше, тем лучше; поскольку это означает бОльший световой поток на матрице и лучшее соотношение сигнал/шум.

У лучших камер мобильных устройств относительная диафрагма составляет от F/2.0 до F/1.7, у остальных - от F/2.2 и выше. Меньше знаменатель - лучше.

Но, если камера имеет оптический зум, то величина F/ может меняться даже несмотря на то, что диафрагма в камерах мобильных устройств - фиксированная. Это происходит из-за того, что положение линз при увеличении зума меняется таким образом, что оптический центр объектива удаляется от матрицы, и её освещенность падает. Соответственно, изменяется и число F/ (относительная диафрагма).

Остальные параметры - менее значительны, да и не всегда упоминаются производителями.

Фокусное расстояние объектива само по себе ни о чем не говорит, но совместно с размером матрицы оно определяет угол зрения. Для большинства тыловых (основных) камер угол зрения (поле зрения) составляет 65-75 градусов, для фронтальных камер - до 90 градусов. При выборе "мобильника" на этот параметр не надо обращать внимания. Правда, если Вам, например, нужна непременно широкоугольная камера, то есть смысл обратить внимание на некоторые модели смартфонов с несколькими камерами, в число которых входит и широкоугольная типа "рыбий глаз".

Проблемы программной обработки фотоснимков

Перед тем, как мы увидим фотографию, смартфон (планшет) её основательно обрабатывает программно на уровне прошивки, приводя к "удобоваримому" виду. Подавляющее большинство этих операций - линейные; то есть, представляют собой необходимую корректировку яркости, контрастности, цветности, и интерполяцию, если разрешение снимка установлено пользователем не совпадающим с разрешением матрицы.

Как выглядят необработанные фотографии в том виде, в каком они приходят с матрицы в смартфон, можно на тех смартфонах, где имеется возможность сохранения фото в RAW (это и есть необработанный формат):


(исходный файл в RAW (DNG) можно скачать , 23 Мб)

Эта фотография имеет бледные цвета, неравномерную яркость (кажется, что небо в центре вокруг храма светлее, но это - не чудо, а дефект), и еще кое-какие недостатки. Смартфон это выправляет, обработанная смартфоном фотография выглядит так:

По поводу неравномерной яркости изображения надо еще добавить, что она отражается и на уровне шумов. Яркость изображения снижается примерно в 1.6 раза к краям, и в 2.2 раза - к углам изображения относительно центра. Отсюда следует, что чем дальше от центра - тем уровень шумов на фотографии будет выше, а четкость - ниже. Соответственно, эти явления надо считать в определенной мере естественными.
Правда, к ухудшению четкости может свою лепту добавить и кривизна оптики. В этом случае расположение мест ухудшения четкости будет несимметричным, см. предыдущий пример фотографии.

Но, кроме линейных операций при обработке таких фото, есть и две нелинейные операции, когда смартфон (планшет) сами дорисовывают на снимке то, чего на нем не было (или убирают то, что было). Эти операции - "шарпинг" и "шумодав".

Начнем с "шарпинга" (дословно с английского - "обострение").
"Шарпинг" - это операция подчеркивания контуров предметов на снимке.
Алгоритм её работы, не вдаваясь в математические подробности, таков: обнаружить контуры предметов, и сделать их более четкими. А для этого - светлую сторону контура сделать светлее, а темную - темнее.

Вот пример "правильной" работы шарпинга:

Посмотрите на фрагмент снимка в масштабе 100%:

Если ОЧЕНЬ хорошо присмотреться, то можно заметить вокруг темной части купола церкви светлую полоску на фоне неба. Толщина этой полоски - всего несколько пикселей. Это и есть "правильная" работа шарпинга - когда она почти не заметна.

А теперь посмотрим пример "неправильной" работы шарпинга:

Посмотрите на фрагмент из левого верхнего угла снимка в масштабе 100%:

Небо и некоторые части здания усыпаны точечками, завитушками и полосочками. Их создал шарпинг, пытаясь подчеркнуть контуры несуществующих предметов; за которые он принял, скорее всего шумы и мелкие неравномерности фона.
В результате картинка получилась с сильными искажениями.

Аналогичные дефекты могут сопровождать и работу "шумодава".
Система шумоподавления должна (по идее) убирать мелкие крапинки, возникающие на равномерном фоне из-за шумов; особенно - в условиях пониженного освещения.
Но на практике часто этот алгоритм работает туповато и начинает "размазывать" мелкие детали на вполне нормальном снимке с хорошим освещением.

Посмотрим на пример ошибочной работы "шумодава":

Посмотрите на фрагмент центральной части снимка в масштабе 100%:

На этом фрагменте отлично видно, что высококонтрастные части снимка получились хорошо; а те места, где находится повышенная концентрация небольших малоконтрастных деталей (веток деревьев), "размазаны" системой шумоподавления, поскольку ошибочно приняты за шум.

Также к ошибкам в программной обработке можно отнести и некоторые дефекты в цветопередаче .

Вариантов в ошибках цветопередачи может быть два: ошибочный цветовой баланс фотографии и низкая насыщенность цветов.

Так выглядит фотография со смещением цветового тона в сторону "тёплых" цветов:

Дефект цветового баланса признаётся таковым только в том случае, если он проявляется на фотографиях систематически. Если же он появляется на фото только иногда, то это - случайное отклонение, вызванное, как правило, специфическими условиями освещения в момент съёмки; и в "зачёт" как дефект не идёт.

Второй дефект программной обработки - низкая цветовая насыщенность - выглядит на фото так:

Сначала даже кажется, что эта фотография - чёрно-белая. Но приглядевшись, потом замечаешь, что трава - чуть-чуть зелёная. :)

Справедливости ради надо сказать, что последние два дефекта (цветового баланса и цветовой насыщенности) встречаются очень редко.

Дефекты в программной обработке никак не следуют из технических параметров камеры; их можно обнаружить, только просматривая тестовые фотографии в обзорах.

Как выбрать смартфон с хорошей камерой?

Итак, разобрав отдельные аспекты теории и практики, пора перейти к полезному применению полученных знаний.

Каков же алгоритм поиска смартфона с хорошей камерой?

Порядок действий будет примерно таким.

1 . Выбрать для детального анализа несколько смартфонов, у которых есть положительная репутация по части камер; или же производители сами заявили о таковой (иногда им можно верить:)). Скорее всего, это будут смартфоны не ниже среднего ценового диапазона и с разрешением основной камеры строго выше 10 Мпикс.

2 . Попытаться найти информацию о том, какой тип камеры (сенсора) установлен в смартфоне (смартфонах). Обычно эта информация публикуется на официальных сайтах производителей смартфонов. Если там не удалось найти такую информацию, можно попытаться найти её на сайте kimovil.com (найдя там характеристики заинтересовавшего смартфона).
Определить тип камеры в смартфоне (планшете) "постфактум" (после приобретения) можно с помощью утилиты "Device Info HW" , загрузив её на устройство из магазина приложений Play Market (для устройств на ОС Android) ; подробнее - в следующей главе.

3 . Далее по типу камеры (сенсора) найти её технические характеристики. Это можно сделать как через поисковики в интернете, так и на официальных сайтах и в англоязычной Википедии. Вот несколько полезных ссылок для сенсоров наиболее известных производителей: SONY (Википедия) , SONY (сайт производителя) , OmniVision (сайт производителя) , Samsung (сайт производителя) , Samsung (Википедия) . Список других производителей (в т.ч. китайских) - .

4 . В найденных технических параметрах камеры (сенсора) в первую очередь следует обратить внимание на физический размер матрицы. При равенстве примененных технологий чем размер матрицы больше, тем лучше получается изображение как по детализации, так и по уровню шумов.
На число мегапикселей обращать внимание следует во вторую очередь, это менее критичный параметр. Бо льшее количество мегапикселей позволяет получить снимки с лучшей детализацией при хорошем освещении, но с бо льшими шумами при пониженном освещении.
Следует также иметь в виду при этом, что в графических редакторах из изображения с бо льшим количеством пикселей всегда можно получить изображение с меньшим (с попутным уменьшением уровня шумов), а обратная операция приводит только к потере резкости и размытию контуров.

5 . Найти обзоры выбранного смартфона (смартфонов) с примерами полноразмерных фотографий (без сжатия размера). Далее желательно проанализировать те из них, в которых содержится максимальное число мелких деталей. Следует обратить внимание на типовые дефекты, перечисленные выше в статье: цветовое виньетирование, наличие областей нерезкости, чрезмерная работа шарпинга и/или шумодава. Если уровень этих дефектов велик, то отбрасываем данный смартфон из рассмотрения. Возвращаемся к пункту 1. :)

6 . Предпоследний пункт, "факультативный" (не обязательный). Рассмотреть возможность приобретения смартфона со сдвоенной камерой. Предназначения сдвоенной камеры могут быть различные.
Если вторая камера - черно-белая, то это позволяет улучшить соотношение сигнал/шум для съемок при пониженном освещении или же сделать качественные черно-белые (монохромные) фотографии.
Также вторая камера может быть и цветной, но с другим разрешением и/или углом зрения. Такие камеры используются обычно используются для определения переднего и заднего плана и создания "эффекта боке" (размытия заднего плана).
Еще один вариант - когда вторая камера имеет большее фокусное расстояние, чем первая. В этом случае она дает оптическое увеличение объектов и используется для создания оптического зума.
Есть ещё и смартфоны с эффектом, обратным предыдущему, т.е. когда вторая камера имеет меньшее фокусное расстояние и делает снимки в стиле "рыбий глаз".
И, наконец, последний вариант - когда вторая камера установлена "для красоты" и полезности в виде улучшения качества снимков или создания творческих эффектов не приносит. Этим грешат, как обычно, смартфоны дешевых китайских производителей.

7 . И последний пункт, тоже факультативный. Изучить по обзорам наличие и работу системы стабилизации изображения: эта система поможет уменьшить "субъективные" факторы ухудшения качества снимков, в первую очередь из-за дрожания камеры.

Как определить, какая камера установлена в Вашем смартфоне (планшете)?

Для смартфонов на системе Android существует отличная утилита, показывающая тип установленных камер (точнее - их сенсоров). Она называется "Device Info HW " и устанавливается легко и непринужденно из магазина приложений Play Market (бесплатно).Утилита считывает из смартфона (планшета) конфигурационную информацию и представляет её в удобочитаемом виде.

Раздел "Камера" в этом приложении выглядит так:


(кликнуть для увеличения)

Верхняя часть таблицы показывает реальные (аппаратные) параметры камер, а нижняя часть - программные (интерполированные). От более высоких интерполированных параметров полезности нет, так как пока что такие алгоритмы детализации добавить не могут (хотя в Google и работают над этой проблемой - как "дорисовать" на фотографии то, чего на ней нет:)).
Также эта диагностическая утилита определяет наличие вспышек при камерах и показывает эту информацию в таблице. Эта возможность может быть интересна в связи с тем, что известны случаи, когда в некоторых смартфонах вспышка для фронтальной камеры была "муляжом", т.е. реально не работала. Эта утилита в таких случаях показывает пользователю, что реально там вспышки нет, и не надо мучиться и пытаться заставить её работать. :)
В приведенном примере основная (тыловая) камера - Samsung S5K3P3 ,имеет разрешение в 1 6 мегапикселей; фронтальная камера - SuperPix SP8407 , разрешение - 8 мегапикселей.

К сожалению, утилита не всегда может показать модель сенсора, особенно для платформ Qualcomm (qcom) . В некоторых случаях для доступа к соответствующей информации в смартфоне могут потребоваться права ROOT , которые, в свою очередь, не для всех моделей удается получить. Также надо иметь в виду, что при получении прав ROOT могут отказаться работать системы бесконтактных платежей - с их точки зрения, это - нарушение правил безопасности.

Правда, в этом случае утилита может показать список совместимых камер, а уже из этого списка есть шанс методом сличения параметров найти ту, которая и применена.

Другие производители:
GalaxyCore (Китай)

Ваш Доктор .
22 февраля 2017 г., с дополнениями от 27 января 2018 г.


Порекомендуйте эту страницу друзьям и одноклассникам

Статьи и Лайфхаки

Содержание :

1.
2.
3.
4.

Читая описание характеристик очередной модели гаджета, одним из первых мы обращаем внимание на тип матрицы дисплея. Даже достаточно далекий от техники человек обычно может по этому поводу сказать: TFT – это «отстой», IPS – это «норм», а AMOLED – это «вау!»

Что же такое эта самая IPS-матрица экрана, которую с наибольшей долей вероятности сегодня можно встретить в смартфоне? Чем она хороша, а в чем – уступает другим типам?

Немного терминологии

У многих понятий и терминов есть два или даже более названия: правильное и общепринятое. Первое позволяет выглядеть в глазах окружающих «профессором»… ну, или «ботаном», в зависимости от среды общения.

Второе используется, если вы хотите, чтобы вас понимали окружающие.

Технология IPS представляет собой не что иное, как разновидность TFT, так называемую Super TFT. А то, что понимается в параметрах мобильных устройств, как TFT, на самом деле именуется «NT+film».

Хотя аббревиатуру NT с отброшенным «film» иной раз тоже можно встретить. Так что речь идет всего лишь о базовой и более продвинутой разновидностях одной и той же технологии.

В то время как, например, экраны AMOLED работают совершенно на ином принципе.

Другой скользкий терминологический момент – это «S-IPS». Там, где редакторам сайта не лень набрать пару лишних букв, встречается именно этот термин.

Однако в чистом виде IPS сегодня практически не встретишь, поэтому принципиальной разницы между полным и сокращенным вариантом нет.

Как это работает


Любой жидкокристаллический основан на способности жидких кристаллов изменять свои оптические свойства под действием приложенного напряжения.

Их молекулы, ориентируясь в пространстве, поляризуют проходящий свет, благодаря чему пиксель «включается» или «выключается», в зависимости от управляющего сигнала.

Ключевое слово здесь – «проходящий»: сами жидкие кристаллы не являются источником света, из-за чего у них возникают проблемы с отображением черного цвета, вместо которого пользователь видит темно-серый.

В TN матрице неактивный пиксель имеет белый цвет, поскольку молекулы изначально ориентированы на пропускание света. В IPS же два слоя жидких кристаллов направлены перпендикулярно друг другу.

Поэтому неактивная точка такого дисплея будет черной. Это отличие наглядно проявляется в таком неприятном явлении, как «битые пиксели».

Плюсы и минусы


Само появление технологии IPS было обусловлено недостатками NT матриц:
  • Малый угол обзора: т.е., при изменении угла зрения пользователь видит картинку в искаженном цвете.

    На мониторах ПК и экранах ноутбуков с этим мирятся до сих пор, в силу экономической привлекательности таких матриц, а вот для мобильных устройств это стало серьезной проблемой.

  • Плохая цветопередача, особенно в отображении черного цвета.
Поэтому на смартфонах и планшетах данная технология сохраняется только в самых дешевых моделях бюджетного и ультрабюджетного сегмента.

Во всех прочих используется технология S-IPS или еще более дорогие матрицы на органических светодиодах. Такие дисплеи стоят несколько дороже, и это можно считать основным недостатком.


Другой минус – это увеличенное по сравнению с базовой версией время отклика. Именно эту проблему решило появление того самого S-IPS, хотя по данному параметру такие матрицы всё же несколько уступают NT-экранам.

Третий недостаток цветопередача, она у OLED устройств гораздо качественнее. На практике это выражается в некоторой «голубоватости» изображений на гаджетах, оснащенных IPS. Ниже у них и контрастность.

Наконец, есть такой немаловажный параметр, как энергоэффективность, по которому этот тип проигрывает устройствам на органических светодиодах.

Из числа достоинств можно назвать широкий угол обзора, хорошее отображение белого цвета, с которым у светодиодных матриц такие же проблемы, как у NT – с черным, а также цену, которая существенно ниже.

Помимо этого, OLED дисплеи имеют неприятную особенность – со временем они «выцветают», чего у жидкокристаллических экранов не наблюдается.

Технология PLS

Иногда на рынке встречаются смартфоны с экранами, выполненными по некоей технологии PLS, разработанной .

Она тоже является разновидностью TFT, однако по сравнению с S-IPS, автором которой является японская компания Hitachi, обеспечивает меньшее время отклика матрицы. Однако в мобильных устройствах она встречается не так уж часто, в отличие от мониторов.


Кроме скорости работы, такие дисплеи имеют меньшее энергопотребление, более качественную цветопередачу и меньшую стоимость.

На текущий момент экраны IPS остаются наиболее массовыми. Их можно встретить как на бюджетных моделях, так и на .

Да что там говорить: даже на последних айфонах экраны выполнены именно по данной технологии, а появление устройств с OLED дисплеем Apple пока только планирует.

Хотя не стоит забывать и о том, что качество изображения зависит не только от типа матрицы, но и от множества прочих параметров.

О том, что не в мегапикселях счастье, уже знают многие пользователи цифровой фототехники. Данная характеристика говорит лишь о том, какие размеры будет иметь фото при просмотре на дисплее, но не более того. На качество получаемого кадра влияют значение апертуры (светосилы), фокусное расстояние, тип матрицы, наличие/отсутствие оптического зума и стабилизации, вид автофокуса, размеры матрицы. О последнем параметре и пойдет речь в нашем материале.

Матрица камеры смартфона – это заменитель пленки в аналоговых фотоаппаратах. Она представляет собой поверхность, покрытую микроскопическими светочувствительными транзисторами. Каждый из них улавливает часть отраженного от предметов света, пропущенного через объектив, и в зависимости от длины оптической волны регистрирует значение. Каждому оттенку соответствует своя частота и длина излучения, за счет этого достигается «запоминание» цвета. Таким образом матрица камеры передает информацию процессору, которая записывается в файл изображения.

Матрица, наряду с объективом, является главной деталью камеры смартфона. Мегапиксели – это количество транзисторов, размещенных на ее поверхности. То есть, цифра в 13 МП означает, что на матрице находится около 13 миллионов эффективных светочувствительных транзисторов.

Производителям камер для смартфонов (самые известные из них – Sony, LG, Samsung, Philips, OmniVision) приходится искать компромиссы между габаритами и качеством матрицы. Дело в том, что при уменьшении размера пикселя, он начинает улавливать меньше света, становится менее чувствительным. А если оставить размеры пикселя прежними, наращивая их количество, то увеличится сам модуль камеры. В зеркалках это не страшно, а вот в смартфонах, толщиной 5-10 мм, каждый микрометр имеет значение.

В итоге в смартфонах, при увеличении мегапикселей, за счет миниатюризации транзисторов, каждый из них улавливает меньше света. Детализация картинки растет, но четкость изображения не меняется. В таких условиях камера на 8 МП не уступит камере на 16 МП, с таким же размером матрицы, а кое-где и обойдет ее.

Ультрапиксели

Ультрапиксели – это маркетинговый термин, введенный компанией HTC при презентации флагмана One M7. Под ним подразумевается матрица, разрешение которой специально уменьшено, с целью увеличения размеров пикселя до уровня полноценных фотоаппаратов. К примеру, упомянутый смартфон имел пиксели с размерами 2 мкм, что почти вдвое больше размеров транзисторов у традиционных матриц (1,1 мкм).

Еще в середине прошлого десятилетия, когда большинство смартфонов имели камеру на 0,3, 1,3 или 2 МП, увеличенные пиксели были обыденным делом. Таковыми обладали флагманы 2006 года Nokia N73 и N95, с пикселями на 5 мкм. Но массовая популяризация камер на 8-13 МП побудила HTC внедрить новый термин, дабы убедить клиентов, что их камера на 4 МП не хуже конкурентов на 8-13 МП.

Потом об ультрапикселях забыли, пока Samsung не выпустили на свет Galaxy S7, с технологией, которую объявили как UltraPixel , где размер пикселя был равен 1.4 мкм. Это позволило матрице захватывать больше света в темноте и делать более четкие снимки за счет увеличения матрицы, в сравнении с Galaxy S6.

Популярные размеры матриц в смартфонах

Размеры матриц цифровых фотокамер исторически принято измерять в дюймах. Но дюймы эти – не простые английские, а «видиконовые». Традиция их применения устоялась в прошлом столетии, когда кинокамеры были аналоговые. Регистрирующая ЭЛМ (электронно-лучевая мишень), именуемая видиконом, имела полезный размер, равный 2/3 от внешнего размера. Поэтому видиконовый дюйм равен 2/3 английского, или 17 мм. Матрица 1/3" означает, что ее диагональ составляет одну третью от 17 мм, или около 5,66 мм.

1/4"

Самый маленький размер матрицы в камере смартфона, выпускаемого в современности. При таких габаритах матрица вмещает 8 миллионов транзисторов, стандартного размера 1,12 мкм. Такими камерами оснащаются бюджетные китайские смартфоны. Качество фотосъемки оставляет желать лучшего, зато достигается компактность. Поэтому подобными матрицами спереди оборудуют флагманские модели с передней камерой на 8 МП.

1/3,2"

Распространенный размер для камер с разрешением 8 МП, но увеличенным размером пикселя до 1,4 мкм. Такая матрица камеры ранее устанавливалась в Google Nexus 5, Meizu MX3, Moto G 2014. Сейчас подобная используется в бюджетных камерафонах (вроде UMI Rome X). Также она может устанавливаться в роли фронталки во флагманах, вроде ZTE Nubia Z9.

1/3"

Еще один ходовый размер матрицы, используемой во многих смартфонах. При сохранении стандартного размера пикселя 1,12 мкм, она обеспечивает разрешение 13 МП. Такими матрицами оснащены камеры Xiaomi Redmi Note 2 и 3, Mi 4c, Meizu M2 и M3 (как Mini, так и Note), Samsung Galaxy J5 2016, Samsung Galaxy S4 и многие другие. Отдельно выделяется Xiaomi Redmi Note 3 Pro, оснащенный матрицей такого размера, но с разрешением 16 МП. Уменьшение пикселя до 1 мкм позволило улучшить детализацию при ярком освещении, но сделало смартфоны хуже приспособленными к условиям средней и слабой освещенности.

Также стоит отметить iPhone 5s и 6, у которых размеры матрицы составляют 1/3", но разрешение – всего 8 МП. За счет увеличенных пикселей эти смартфоны обеспечивают качество фото, не уступающее (а иногда и превосходящее) конкурентам с 13 и 16 МП. Такой же размер матрицы имеет и iPhone 6s, с разрешением 12 МП. Его показатели в этом плане немного превосходят конкурентов на 13 МП, так как габарит пикселя составляет 1,22 мкм (а не 1,12 мкм).

1/2,8"

Наиболее популярный размер матрицы камеры для смартфонов с 16 МП. Такие камеры встречаются у Xiaomi Max, OnePlus 3, Xiaomi Mi5. Эти смартфоны отличаются тем, что размер пикселя составляет 1,12 мкм. Почти 90 % устройств с 16 МП имеют матрицу размера 1/2,8".

Cнимок на камеру Xiaomi Mi5

1/2,6"

Матрица 1/2,6" – это уже «покушение» на класс реальных (а не маркетинговых) камерафонов. Такой оборудованы LG G4 (16 МП) и ZTE Nubia Z9. Также подобные матрицы встречаются в Samsung Galaxy S6 и S6 Edge, Note 5, Asus ZenFone 3 Ultra и другие флагманские устройства. Подобная камера (на 12 МП) использована в Samsung Galaxy S7, S7 Edge, Note 7, но с размером 1/2,6.

1/2,4"

Размер матрицы 1/2,4" - это уже явный признак камерафона. Sony в своих 21-мегапикскльных камерах (как у Xperia Z1, Z2), а также Meizu MX4, MX5, сохраняют приемлемый размер пикселей 1,12 мкм, в угоду разрешению. Также такая матрица встречается в Moto X Force и других смартфонах.

1/2,3"

Фото с Sony Xperia Z1 Compact

Это уже «гигант» в мире мобильных камер. Наличие такой матрицы подразумевает, что производитель позаботился о разумном сочетании мегапикселей и размеров матрицы. Она встречается в Sony Xperia Z1 Compact, Xperia Z2 (оба – 21 МП). Такое сочетание позволяет добиться отличной детализации без особого ущерба четкости.

Более крупные матрицы камер

К сожалению, в прошлом остались матрицы, обладающие более крупными размерами. Сейчас они применяются только в фотоаппаратах (зеркальных, беззеркальных и мыльницах). Производители стараются поднять светочувствительность транзисторов матриц, улучшить их, но не всегда это возможно. Так как фокусное расстояние напрямую связано с размерами матрицы – увеличение оной приведет к росту высоты камеры. В век, когда превышать толщину смартфона более 10 мм становится моветоном и грешным делом – увидеть матрицы большего размера нам не суждено.

Лучшие статьи по теме