Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 8
  • Формирование конфигурации системы теплоснабжения. Тепловые сети и способы прокладки трубопроводов в ппу изоляции

Формирование конфигурации системы теплоснабжения. Тепловые сети и способы прокладки трубопроводов в ппу изоляции

Подготовленный теплоноситель (пар определенного давления или вода, нагретая до заданной температуры) подается по тепловым сетям к потребителям теплоты. Тепловая сеть состоит из теплопроводов, т. е. соединенных сваркой стальных труб, тепловой изоляции, запорной и регулировочной арматуры, насосных подстанций, авторегуляторов, компенсаторов тепловых удлинений, дренажных и воздухоспускных устройств, подвижных и неподвижных опор, камер обслуживания и строительных конструкций.

В настоящее время тепловые сети выполняются большей частью двухтрубными, состоящими из подающего и обратного теплопроводов для водяных сетей и паропровода с конденсатопроводом для паровых сетей.

Схема тепловой сети определяется размещением источников теплоты (ТЭЦ или районных котельных) по отношению к району теплового потребления, характером тепловой нагрузки и видом теплоносителя. Схема сети должна обеспечивать надежность и экономичность эксплуатации; протяженность сети должна быть минимальной, а конфигурация по возможности простой.

Пар в качестве теплоносителя используется главным образом для технологических нагрузок промышленных предприятий. Основная нагрузка паровых сетей обычно концентрируется в сравнительно небольшом количестве узлов, которыми являются цехи промышленных предприятий. Поэтому удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки, как правило, невелика. Когда по характеру технологического процесса допустимы кратковременные (до 24 ч) перерывы в подаче пара, наиболее экономичным и в то же время достаточно надежным решением служит прокладка однотрубного паропровода с конденсатопроводом.

Более сложной задачей считается выбор схемы водяных тепловых сетей, поскольку их нагрузка, как правило, менее концентрирована. Водяные тепловые сети в современных городах обслуживают большое число потребителей, измеряемое нередко тысячами и даже десятками тысяч присоединенных зданий.

Водяные тепловые сети должны четко разделяться на магистральные и распределительные. К магистральным обычно относятся теплопроводы, соединяющие источники теплоты с районами теплового потребления, а также между собой. Теплоноситель поступает из магистральных в распределительные сети и по распределительным сетям подается через групповые тепловые подстанции или местные тепловые подстанции к теплопотребляющим установкам абонентов. Непосредственное присоединение тепловых потребителей к магистральным сетям не следует допускать, за исключением случаев присоединения крупных промышленных предприятий.

Различают радиальные и кольцевые тепловые сети. Наиболее часто применяются радиальные сети, которые характеризуются постепенным уменьшением диаметра по мере удаления от источника теплоснабжения и снижения тепловой нагрузки (рис. 26). Такие сети просты в эксплуатации и требуют наименьших капитальных затрат.

Недостатком радиальных сетей является отсутствие резервирования. При аварии на одной из магистралей, например в точке а магистрали I , прекратится подача теплоты всем потребителям, расположенным после точки а по ходу теплоносителя. При аварии в начале магистрали прекращается теплоснабжение всех потребителей; присоединенных к этой магистрали. Для резервирования снабжения потребителей теплотой могут предусматриваться перемычки между магистралями. Перемычки прокладываются повышенного диаметра, они соединяют середины или концы магистралей.

При теплоснабжении крупных городов от нескольких ТЭЦ целесообразно предусмотреть взаимную блокировку ТЭЦ путем соединения их магистралей блокировочными связями. В этом случае может быть создана объединенная кольцевая тепловая сеть с несколькими источниками питания. Схема такой сети показана на рис. 27. В такую же систему в ряде случаев могут быть объединены тепловые сети ТЭЦ и крупных районных или промышленных котельных.

Кольцевание сетей значительно удорожает сети, но повышает надежность теплоснабжения. Кольцевание промышленных тепловых сетей иногда является обязательным при снабжении теплотой потребителей, не допускающих перерывов в подаче теплоносителя, как правило, для технологических потребностей. В этом случае кольцевание может быть заменено дублированием, т. е. прокладкой параллельно двух паропроводов или теплопроводов. Второй паропровод или теплопровод в этом случае находится в «горячем резерве». При соответствующих обоснованиях на промышленных предприятиях предусматривается резервная мощность тепловых сетей для последующего расширения предприятия или отдельных цехов.

Объединение магистральных тепловых сетей нескольких источников теплоты наряду с резервированием теплоснабжения позволяет уменьшить суммарный котельный резерв на ТЭЦ и увеличить степень использования наиболее экономичного оборудования в системе за счет оптимального распределения нагрузки между источниками теплоты.

СХЕМЫ, ПРОКЛАДКИ И КОНСТРУКЦИИ ТЕПЛОВЫХ СЕТЕЙ

Схема тепловой сети определяется размещением источников теплоты (ТЭЦ или котельных) по отношению к району теплового потребления, характером тепловой нагрузки потребителей района и видом теплоносителя. Основные принципы, которыми следует руководствоваться при выборе схемы теплосети, - это надежность и экономичность. При выборе конфигурации теплосетей, как правило, стремиться к получению наиболее простых решений и наименьшей длины теплопроводов.

Пар в качестве теплоносителя используется главным образом для технологических нагрузок промышленных предприятий. Основная нагрузка паровых сетей обычно концентрируется в сравнительно небольшом количестве узлов, которыми являются цехи промышленных предприятий. Поэтому удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки, как правило, невелика. Когда по характеру технологического процесса допустимы кратковременные (до 24 ч) перерывы в подаче пара, наиболее экономичным и то же время достаточно надежным решением является прокладка однотрубного паропровода с конденсатопроводом.

Следует иметь в виду, что дублирование сетей приводит к значительному возрастанию их стоимости и расхода материалов и в первую очередь стальных трубопроводов. При укладке вместо одного трубопровода, рассчитанного на 100% нагрузки, двух параллельных, рассчитанных на 50% нагрузки, площадь поверхности трубопроводов возрастает на 56%. Соответственно возрастают расход металла и начальная стоимость тепловой сети.

Более сложной задачей является выбор схемы водяных теплосетей, поскольку их нагрузка, как правило, менее концентрирована. Водяные теплосети в современных городах обслуживают большое количество потребителей, измеряемое нередко тысячами и даже десятками тысяч присоединенных зданий, расположенных на территориях, измеряемых часто многими десятками квадратных километров.

Водяные сети менее долговечны по сравнению с паровыми главным образом из-за большей подверженности наружной коррозии стальных трубопроводов подземных водяных сетей по сравнению с паропроводами. Кроме того, водяные теплосети более чувствительны к авариям из-за большой плотности теплоносителя. Аварийная уязвимость водяных систем теплоснабжения особенно заметно проявляется в крупных системах теплоснабжения при зависимом присоединении отопительных установок к теплосети, поэтому при выборе схемы водяных теплосетей вопросам надежности и резервирования теплоснабжения необходимо уделить особое внимание.

Водяные теплосети должны четко разделяться на магистральные и распределительные. К магистральным сетям обычно относятся теплопроводы, соединяющие источники теплоты с районами теплового потребления, а также между собой. Теплоноситель поступает из магистральных сетей в распределительные сети и по ним подается через ЦТП или ИТП к теплопотребляющим установкам потребителей. Непосредственное присоединение потребителей теплоты к магистральным сетям допускать не следует, за исключением случаев присоединения крупных промышленных предприятий.



В узлах присоединения распределительных сетей к крупным магистралям сооружаются так называемые секционирующие камеры (СК), в которых размещаются: секционирующие задвижки, головные задвижки распределительных сетей, задвижки на блокирующих связях между смежными магистралями, а также между магистралями и резервными источниками теплоснабжения (например, районными котельными). Секционирующие задвижки устанавливаются обычно на магистральных сетях через 2-3 км. Благодаря разделению магистральных сетей на секции уменьшаются потери воды из теплосети при аварии, т.к. место аварии локализуется секционирующими задвижками. Это облегчает и ускоряет включение в работу сети после аварии. Задвижки, установленные в СК, должны быть оборудованы электро- или гидроприводом и иметь телемеханическую связь с центральным диспетчерским пунктом. Распределительные сети должны иметь двустороннее присоединение к магистрали с обеих сторон секционирующей задвижки с тем, чтобы можно было обеспечить бесперебойное теплоснабжение абонентов при авариях на любом секционированном участке магистрали.

В секционировании паровых магистралей нет необходимости, так как масса пара, требующаяся для заполнения длинных паропроводов, невелика.

Блокировочные связи между магистралями могут выполняться однотрубными. Соответствующей схемой их присоединения к магистральной сети может быть предусмотрено использование блокирующей связи как для подающей, так и обратной линии.

Распределительные тепловые сети отводимые от СК, при диаметре этих сетей 700 мм и меньше, а также магистральные сети диаметром 700 мм и меньше выполняются обычно тупиковыми. Это объясняется тем, что максимально допустимая длительность аварийного прекращения теплоснабжения для большинства абонентов водяных тепловых сетей, за исключением зданий первой категории теплоснабжения (больницы, детские учреждения, государственные музеи и др.), может быть установлена в пределах до 24 ч, так как за такой период благодаря аккумулирующей способности зданий не возникает опасности их размораживания при наличии автономной циркуляции воды в абонентских отопительных установках.

Объединение магистральных тепловых сетей нескольких источников теплоты наряду с резервированием теплоснабжения позволяет уменьшить суммарное резервирование котлов на ТЭЦ и увеличить степень использования наиболее экономичного оборудования в системе за счет оптимального распределения нагрузки между источниками теплоты.

Тепловая энергия в виде горячей воды или пара транспортируется от источника теплоты (ТЭЦ или крупной котельной) к тепловым потребителям по специальным трубопроводам, называемым тепловыми сетями.

Тепловая сеть - один из наиболее трудоемких элементов систем централизованного теплоснабжения. Она представляет собой теплопроводы- сложные сооружения, состоящие из соединенных между собой сваркой стальных труб, тепловой изоляции, компенсаторов тепловых удлинений, запорной и регулирующей арматуры, строительных конструкций, подвижных и неподвижных опор, камер, дренажных и воздухоспускных устройств.

По количеству параллельно проложенных теплопроводов тепловые сети могут быть однотрубными, двухтрубными и многотрубными.

Однотрубные сети наиболее экономичны и просты. В них сетевая вода после систем отопления и вентиляции должна полностью использоваться для горячего водоснабжения. Однотрубные тепловые сети являются прогрессивными, с точки зрения значительного ускорения темпов строительства тепловых сетей. В трехтрубных сетях две трубы используют в качестве подающих для подачи теплоносителя с разными тепловыми потенциалами, а третью трубу - в качестве общей обратной. В четырехтрубных сетях одна пара теплопроводов обслуживает системы отопления и вентиляции, а другая - систему горячего водоснабжения и технологические нужды.

В настоящее время наибольшее распространение получили двухтрубные тепловые сети , состоящие из подающего и обратного теплопроводов для водяных сетей и паропровода с конденсатопроводом для паровых сетей. Благодаря высокой аккумулирующей способности воды, позволяющей осуществлять дальнее теплоснабжение, а также большей экономичности и возможности центрального регулирования отпуска теплоты потребителям, водяные сети имеют более широкое применение, чем паровые.

Водяные тепловые сети по способу приготовления воды для горячего водоснабжения разделяются на закрытые и открытые . В закрытых сетях для горячего водоснабжения используется водопроводная вода, нагреваемая сетевой водой в водоподогревателях. При этом сетевая вода возвращается на ТЭЦ или в котельную. В открытых сетях вода для горячего водоснабжения разбирается потребителями непосредственно из тепловой сети и после использования ее в сеть уже не возвращается.

Тепловые сети разделяют на магистральные , прокладываемые на главных направлениях населенных пунктов, распределительные - внутри квартала, микрорайона и ответвления к отдельным зданиям.

Радиальные сети (рис. 1а) сооружают с постепенным уменьшением диаметров теплопроводов в направлении от источника теплоты. Такие сети наиболее просты и экономичны по начальным затратам. Их основ ной недостаток - отсутствие резервирования. Во избежание перерывов в теплоснабжении (в случае аварии на магистрали радиальной сети прекращается теплоснабжение потребителей, присоединенных на аварийном участке) должно предусматриваться резервирование подачи теплоты потребителям за счет устройства перемычек между тепловыми сетями смежных районов и совместной работы источников теплоты (если их несколько). Радиус действия водяных сетей во многих городах достигает значительной величины (15–20 км).

Рис. 1. Схемы тепловых сетей: тупиковая (а) и кольцевая (б)

1- лучевой магистральный теплопровод; 2 - тепловые потребители; 3 - пере­мычки; 4 - районные (квартальные) котельные; 5 - секционирующие камеры; 6 - кольцевая магистраль; 7 - центральные тепловые пункты; 8 - промыш­ленные предприятия

Устройством перемычек тепловая сеть превращается в радиально-кольцевую, происходит частичный переход к кольцевым сетям. Для предприятий, в которых не допускается перерыв в теплоснабжении, предусматривают дублирование или кольцевые (с двусторонней подачей теплоты) схемы тепловых сетей. Хотя кольцевание сетей существенно удорожает их, но зато в крупных системах теплоснабжения значительно повышается надежность теплоснабжения, создается возможность резервирования, а также повышается качество гражданской обороны.


Паровые сети устраивают преимущественно двухтрубными. Возврат конденсата осуществляется по отдельной трубе - конденсатопроводу. Пар от ТЭЦ по паропроводу со скоростью 40–60 м/с и более идет к месту потребления. В тех случаях, когда пар используется в теплообменниках, конденсат его собирается в конденсатных баках, откуда насосами по конденсатопроводу возвращается на ТЭЦ.

Рис. 2. Прокладка теплопрово­дов на мачтах

Рис. 3. Проходной канал из сборных железобетонных блоков

Направление трассы тепловых сетей в городах и других населенных пунктах должно предусматриваться по районам наиболее плотной тепловой нагрузки с учетом существующих подземных и надземных сооружений, данных о составе грунтов и уровне стояния грунтовых вод, в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог, вне проезжей части и полосы зеленых насаждений. Следует стремиться к наименьшей протяженности трассы, а следовательно, к меньшим объемам работ по прокладке.

Рис. 4. Непроходные каналы марки КЛ (а), КЛп (б) и КЛс (в)

По способу прокладки тепловые сети делят на подземные и надземные (воздушные). Надземная прокладка труб (на отдельно стоящих мачтах или эстакадах, на кронштейнах, заделываемых в стены здания) применяется на территориях промышленных предприятий, при сооружении тепловых сетей вне черты города, при пересечении оврагов и т. д.. Надземная прокладка тепловых сетей рекомендуется преимущественно при высоком стоянии грунтовых вод. Преобладающим способом прокладки трубопроводов тепловых сетей является подземная прокладка: в проходных каналах и коллекторах совместно с другими коммуникациями; в полупроходных и непроходных каналах; бесканальная (в защитных оболочках различной формы и с засыпной теплоизоляцией).

Наиболее совершенный, но и более дорогой способ представляет собой прокладка теплопроводов в проходных каналах, которые применяют при наличии нескольких теплопроводов больших диаметров. При температуре воздуха в каналах более 50 °С предусматривают естественную или механическую вентиляцию.

Вытяжные шахты на трассе размещают примерно через 100 м. Приточные шахты располагают между вытяжными и по возможности объединяют с аварийными люками. На участках тепловых сетей с большим числом трубопроводов и высокой температурой теплоносителей устраивают механическую вентиляцию. При температуре воздуха в каналах ниже 40 °С их периодически проветривают, открывая люки и входы. Во время производства ремонтных работ можно применять механический передвижной вентиляционный агрегат. В больших городах строят так называемые городские коллекторы, в которых прокладывают теплопроводы, водопровод, электрические и телефонные кабели.

Полупроходные каналы состоят из стеновых блоков Г-образной формы, железобетонных днищ и перекрытий. Строят их под проездами с интенсивным уличным движением, под железнодорожными путями, при пересечении зданий, где затруднено вскрытие теплопроводов для ремонта. Высота их обычно не превышает 1600 мм, ширина прохода между трубами 400–500 мм. В практике централизованного теплоснабжения наиболее широко применяются непроходные каналы .

Рис. 5. Конструктивные элементы тепловых сетей

а -камера тепловой сети; 1- сальниковые компенсаторы; 2 - манометры; 3 - неподвижная опора; 4 - канал; б -размещение ниш по трассе теплопро­водов: Н - неподвижная опора; П - подвижная опора; в - размещение ком­пенсатора в нише:1 - подающий трубопровод; 2 - обратный трубопровод; 3 -стенка; г - сальниковый компенсатор; 1 - патрубок; 2 - грундбукса; 3 - набивка-шнур; 4 - кольцо уплотнительное; 6 - корпус; 6 - контрбукса; 7 - кольцо предохранительное; 8- болт: 9 - шайба; 10 - гайка; д - неподвиж­ная щитовая опора; 1 - железобетонная плита-щит; 2 - приварные упоры; 3 -канал; 4 - бетонная подготовка: 5 -трубопроводы; 6 - дренажное от­верстие; е - катковая подвижная опора: 1 - каток; 2 - направляющие; 3 - металлическая подкладка

Рис. 6. Бесканальная проклад­ка теплопроводов в монолитных оболочках из армированного пено­бетона

1- армопенобетонная оболочка; 2 - песчаная подсыпка; 3 - бетонная под­готовка; 4 - грунт

Разработаны типовые каналы трех видов: канал марки КЛ, состоящий из лотков и железобетонных плит перекрытия; канал марки КЛп, состоящий из плиты-днища и лотка и канал марки КЛс, состоящий из двух лотков, уложенных один на другой и соединенных на цементном растворе с помощью двутавровых балок. По трассе подземного теплопровода устраивают специальные камеры и колодцы для установки арматуры, измерительных приборов, сальниковых компенсаторов и др., а также ниши для П-образных компенсаторов. Подземный теплопровод прокладывают на скользящих опорах. Расстояние между опорами принимают в зависимости от диаметра труб, причем опоры подающего и обратного трубопроводов устанавливают вразбежку.

Тепловые сети в целом, особенно магистральные, являются серьезным и ответственным сооружением. Их стоимость, по сравнению с затратами на строительство ТЭЦ, составляет значительную часть.

Бесканальный способ прокладки теплопровода - самый дешевый. Применение его позволяет снизить на 30–40% строительную стоимость тепловых сетей, значительно уменьшить трудовые затраты и расход строительных материалов. Блоки теплопроводов изготовляют на заводе. Монтаж теплопроводов на трассе сводится лишь к укладке автокраном блоков в траншею и сварке стыков. Заглубление тепловых сетей от поверхности земли или дорожного покрытия до верха перекрытия канала или коллектора принимается, м: при наличии дорожного покрытия - 0,5, без дорожного покрытия - 0,7, до верха оболочки бесканальной прокладки - 0,7, до верха перекрытия камер - 0,3.

В настоящее время свыше 80% тепловых сетей проложены в непроходных каналах, около 10% - надземные, 4% - в проходных каналах и тоннелях и около б% - бесканальные. Средний срок службы подземных канальных теплопроводов вдвое меньше нормативного и не превышает в среднем 10–12 лет, а бесканальных с изоляцией на битумовяжущей основе - не более 6- 8 лет. Основной причиной повреждений является наружная коррозия, возникающая из-за отсутствия или некачественного нанесения антикоррозионных покрытий, неудовлетворительного качества или состояния покровных слоев, допускающих избыточное увлажнение изоляции, а также вследствие затопления каналов из-за неплотностей конструкций. Как у нас в стране, так и за рубежом ведется постоянный поиск, а в последние годы особенно интенсивно, в направлении повышения долговечности теплопроводов, надежности их работы и снижения затрат на их сооружение.

Схемы и конфигурации тепловых сетей

Задачи гидравлического расчета тепловых сетей

Гидравлический расчет является одним из важнейших этапов проектирования и эксплуатации тепловых сетей.

При проектировании тепловых сетей в прямую задачу гидравлического расчета входит:

1. Определœение диаметров трубопроводов;

2. Определœение потерь давления на участках;

3. Определœение давления в различных точках;

4. Увязка всœех точек системы при статическом и динамическом режимах.

В некоторых случаях (при эксплуатации тепловых сетей) может решаться обратная задача, ᴛ.ᴇ. определœение пропускной способности трубопроводов при известном диаметре или потерях давления участка.

В результате после гидравлического расчета тепловой сети бывают решены следующие задачи:

1. Определœение капитальных вложений;

2. Подбор циркуляционных и подпиточных насосов;

3. Выбор схем присоединœения абонентов;

4. Выбор регулирования абонентских вводов;

5. Разработка режима эксплуатации.

Для проведения гидравлического расчета должны быть заданы схема и профиль тепловой сети, указаны размещения источника и потребителœей и расчетные тепловые нагрузки.

Схема тепловой сети определяется размещением источника теплоты (ТЭЦ или котельной) по отношению к району теплопотребления, характером тепловой нагрузки и видом теплоносителя (рис. 5.1 ).

Основные принципы, которыми следует руководиться при выборе схемы тепловой сети - ϶ᴛᴏ надежность и экономичность.

Экономичность тепловой сети определяется по - среднее удельное падение давления по длинœе. = f (стоимости сети, расхода электроэнергии на перекачку теплоносителя, теплопотерь трубопроводов и т.д.)

Удельные потери давления на трение при гидравлических расчетах водяных тепловых сетей следует определять на основании технико-экономических расчетов.

В случае если технико-экономические расчёты не проводятся, то рекомендуется принимать:

Магистральные трубопроводы;

Ответвления.

Надежность тепловой сети - ϶ᴛᴏ способность непрерывной подачи теплоносителя к потребителю в крайне важно м количестве в течении всœего года. Требования к надежности тепловой сети возрастают с понижением расчетной температуры наружного воздуха и увеличением диаметров трубопроводов. В СНиПе для различных t нр и d тр указаны крайне важно сть резервирования подачи теплоты и допускаемое снижение подачи от расчетного значения.

Аварийная уязвимость тепловой сети особенно заметно проявляется в крупных системах теплоснабжения при зависимом присоединœении абонентов, в связи с этим при выборе схемы водяной тепловой сети вопросам надежности и резервирования теплоснабжения крайне важно уделить особое внимание.

Водяные тепловые сети разделяются на магистрали и распределительные. К магистралям относятся трубопроводы, соединяющие источник с районами теплопотребления. Из магистралей теплоноситель поступает в распределительные сети и по ним через ЦТП и ИТП к абонентам. Непосредственное присоединœение потребителœей к магистралям тепловой сети допускать не следует, кроме крупных промышленных предприятий (с Q > 4 МВт ).

Рис. 5.1.

Принципиальная

схема тепловой

СК – секционирущая камера

В местах присоединœения распределительных сетей к магистралям сооружают секционирующие камеры (СК), в которых размещают: секционирующие задвижки, задвижки распределительных сетей и т.д.

Секционирующие задвижки устанавливают на магистралях с 100 мм на 1000 м , 400 мм на 1500 м . Благодаря разделœению магистральных сетей на секции уменьшаются потери воды из тепловой сети при аварии, т.к. место аварии локализуется секционными задвижками.

Принципиально существуют две схемы: тупиковая(радиальная) и кольцевая.

Рис. 5.2 . Принципиальные схемы тепловых сетей: а, в – тупиковые;

в – кольцевая; 1 – магистраль 1; 2 – магистраль 2;

3 – резервирующая перемычка

Тупиковая схема (рис. 5.2а, в ) более дешевая по начальным затратам, требует меньше металла и проста в эксплуатации. При этом менее надежна, т.к. при аварии на магистралях прекращается теплоснабжение абонентов, присоединœенных за местом аварии.

Кольцевая схема (рис. 5.2б ) более надежна и применяется в крупных системах теплоснабжения от нескольких источников.

Для увеличения надежности работы тупиковых схем применяют резервирующие перемычки (рис. 5.2в ).

Схемы и конфигурации тепловых сетей - понятие и виды. Классификация и особенности категории "Схемы и конфигурации тепловых сетей" 2017, 2018.

5.2. Определение схемы и конфигурации тепловых сетей.

При проектировании тепловых сетей выбор схемы является сложной технико-экономической задачей. Схема тепловой сети определяется не только размещением источников тепла по отношению к потребителям, но и видом теплоносителя, характером тепловых нагрузок и их расчетной величиной.

Основными критериями, которыми оценивается качество проектируемой тепловой сети, должны являться ее и экономическая эффективность. При выборе конфигурации тепловых сетей нужно стремиться к наиболее простым решениям и, по возможности, меньшей длине трубопроводов.

В тепловых сетях в качестве теплоносителей могут применяться как вода, так и пар. Пар в качестве теплоносителя используется главным образом для технологических нагрузок промышленных предприятий. Обычно протяженность паровых сетей на единицу расчетной тепловой нагрузки невелика. Если по характеру технологического процесса допустимы кратковременные (до 24 ч) перерывы в подаче пара, то наиболее экономичным и в то же время достаточно надежным решением служит прокладка однотрубного паропровода с опроводом.

Необходимо иметь в виду, что дублирование паровых сетей приводит к значительному возрастанию их стоимости и расхода материалов, в первую очередь стальных трубопроводов. При укладке вместо одного трубопровода, рассчитанного на полную нагрузку, двух параллельных, рассчитанных на половинную нагрузку, площадь поверхности трубопроводов возрастает на 56 %. Соответственно возрастают расход металла и начальная стоимость сети.

Более сложной задачей считается выбор схемы водяных тепловых сетей, поскольку их нагрузка, как правило, менее концентрирована. Водяные тепловые сети в современных городах обслуживают большое число потребителей, измеряемое нередко тысячами и даже десятками тысяч присоединенных зданий, расположенных на территориях, измеряемых часто многими десятками квадратных километров.

Водяные сети менее долговечны по сравнению с паровыми сетями главным образом из-за большей подверженности наружной коррозии стальных трубопроводов, проложенных в подземных каналах. Кроме того, водяные тепловые сети более чувствительны к авариям из-за большей плотности теплоносителя. Аварийная уязвимость водяных тепловых сетей особенно заметно проявляется в крупных системах при зависимом присоединении отопительных установок к тепловой сети, поэтому при выборе схемы водяных тепловых сетей вопросам надежности и резервирования теплоснабжения необходимо уделить особое внимание.

Водяные тепловые сети должны четко разделяться на ные и распределительные. К ным сетям обычно относятся теплопроводы, соединяющие источники теплоты с районами теплового потребления, а также между собой.

Теплоноситель поступает из ных сетей в распределительные сети и по распределительным сетям подается через групповые тепловые подстанции или местные тепловые подстанции к теплопотребляющим установкам абонентов. Непосредственное присоединение тепловых потребителей к ным сетям не следует допускать, за исключением случаев присоединения крупных промышленных предприятий,

Ные тепловые сети с помощью задвижек разделяются на секции длиной 1 – 3 км. При раскрытии (разрыве) трубопровода место отказа или аварии локализуется секционирующими задвижками. Благодаря этому уменьшаются потери сетевой воды, и сокращается длительность ремонта вследствие уменьшения времени, необходимого для дренажа воды из трубопровода перед проведением ремонта и для заполнения участка трубопровода сетевой водой после ремонта.

Расстояние между секционирующими задвижками выбирается так, чтобы время, требуемое для проведения ремонта, было меньше времени, в течение которого внутренняя температура в отапливаемых помещениях при полном отключении отопления при расчетной наружной температуре для отопления опустится ниже 12 – 14 °С. Это минимально предельное значение, которое принимают обычно, в соответствии с договором теплоснабжения.

Расстояние между секционирующими задвижками должно быть, как правило, меньше при больших диаметрах трубопроводов и при более низкой расчетной наружной температуре для отопления . Время, необходимое для проведения ремонта, возрастает с увеличением диаметра тру бопровода и расстояния между секционирующими задвижками. Это обусловлено тем, что с увеличением диаметра существенно возрастает время ремонта.

В случае если время ремонта больше допустимого, необходимо предусматривать системное резервирование теплоснабжения при выходе из строя участка тепловой сети. Одним из методов резервирования является блокировка смежных магистралей. Секционирующие задвижки удобно размещать в узлах присоединения распределительных сетей к ным тепловым сетям. В этих узловых камерах кроме секционирующих задвижек размещаются также головные задвижки распределительных сетей, задвижки на блокирующих линиях между смежными магистралями или между магистралями и резервными источниками теплоснабжения, например районными ьными (камеры 4 на рис. 5.1). В секционировании паровых магистралей нет необходимости, так как масса пара, требующаяся для заполнения длинных паропроводов, невелика. Секционные задвижки должны быть оборудованы электро- или гидроприводом и иметь телемеханическую связь с центральным диспетчерским пунктом. Распределительные сети должны иметь присоединение к магистрали с обеих сторон секционирующих задвижек с тем, чтобы можно было обеспечить бесперебойное абонентов при авариях на любом секционированном участке магистрали.

Рис. 5.1. Принципиальная однолинейная коммуникационная схема двухтрубной водяной тепловой сети с двумя магистралями

1 - коллектор ; 2 - ная сеть; 3 - распределительная сеть; 4 - секционирующая камера; 5 - секционирующая задвижка; 6 - ; 7 - блокирующая связь

Блокировочные связи между магистралями могут выполняться однотрубными. Соответствующей схемой их присоединения к ной сети может быть предусмотрено использование блокировочной связи как для подающего, так и для обратного трубопровода.

В зданиях особой категории, которые не допускают перерывов в теплоснабжении, должна быть предусмотрена возможность резервного теплоснабжения от газовых или электрических нагревателей или же от местных ьных на случай аварийного прекращения централизованного теплоснабжения.

По СНиП 2.04.07-86 допускается уменьшение подачи теплоты в аварийных условиях до 70 % суммарного расчетного расхода (максимально-часового на и вентиляцию и среднечасового на горячее водоснабжение). Для предприятий, в которых не допускаются перерывы в подаче теплоты, должны предусматриваться дублированные или кольцевые схемы тепловых сетей. Расчетные аварийные расходы теплоты должны приниматься в соответствии с режимом работы предприятий.

На рис. 5.1 приведена принципиальная однолинейная схема двухтрубной водяной тепловой сети от электрической мощностью 500 МВт и тепловой мощностью 2000 МДж/с (1700 Гкал/ч).

Радиус действия тепловой сети 15 км. До конечного района теплопотребления передается по двум двухтрубным транзитным магистралям длиной 10 км. Диаметр магистралей на выходе с 1200 мм. По мере распределения воды в попутные ответвления диаметры ных линий уменьшаются. В конечный район теплового потребления вводится по четырем магистралям диаметром 700 мм, а затем распределяется по восьми магистралям диаметром 500 мм. Блокировочные связи между магистралями, а также резервирующие ные подстанции установлены только на линиях диаметром 800 мм и более.

Такое решение допустимо в том случае, когда при принятом расстоянии между секционирующими задвижками (на схеме – 2 км) время, необходимое для ремонта трубопровода диаметром 700 мм, меньше времени, в течение которого внутренняя температура отапливаемых зданий при отключении отопления при наружной температуре снизится от 18 до 12 ºС (не ниже).

Блокировочные связи и секционирующие задвижки распределены таким образом, что при аварии на любом участке магистрали диаметром 800 мм и более обеспечивается всех абонентов, присоединенных к тепловой сети. абонентов нарушается только при авариях на линиях диаметром 700 мм и менее.

В этом случае прекращается абонентов, расположенных за местом аварии (по ходу теплоты).

При теплоснабжении крупных городов от нескольких целесообразно предусмотреть взаимную блокировку посредством соединения их магистралей блокировочными связями. В этом случае может быть создана объединенная кольцевая

Блокирующие связи между магистралями большого диаметра должны иметь достаточную пропускную способность, обеспечивающую передачу резервирующих потоков воды. В необходимых случаях для увеличения пропускной способности блокирующих связей сооружаются ные подстанции.

Независимо от блокирующих связей между магистралями целесообразно в городах с развитой нагрузкой горячего водоснабжения предусматривать перемычки сравнительно небольшого диаметра между смежными распределительными тепловыми сетями для резервирования нагрузки горячего водоснабжения.

При диаметрах магистралей, отходящих от источника теплоты, 700 мм и менее обычно применяют радиальную (лучевую) схему тепловой сети с постепенным уменьшением диаметра по мере удаления от станции и снижения присоединенной тепловой нагрузки.

Такая сеть наиболее дешевая по начальным затратам, требует наименьшего расхода металла на сооружение и проста в эксплуатации. Однако при аварии на магистрали радиальной сети прекращается абонентов, присоединенных за местом аварии. Если происходит авария на магистрали вблизи станции, то прекращается всех потребителей, присоединенных к магистрали. Такое решение допустимо, если время ремонта трубопроводов диаметром не менее 700 мм удовлетворяет вышесказанному условию.

Вопрос о том, при каких диаметрах теплопроводов какую схему тепловых сетей (радиальную или кольцевую) следует применять в системах централизованного теплоснабжения, должен решаться исходя из конкретных условий, диктуемых ю теплоснабжения потребителей теплоты: допускают они перерыв в подаче теплоносителя или нет, каковы затраты на резервирование и т.п. Поэтому в условиях рыночной экономики указанная выше регламентация диаметров и схем тепловых сетей не может считаться единственно правильным решением.

Лучшие статьи по теме