Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 7, XP
  • Диэлектрическая стержневая антенна. Ребристо-стержневая антенна Главным достоинством стержневой диэлектрической антенны является

Диэлектрическая стержневая антенна. Ребристо-стержневая антенна Главным достоинством стержневой диэлектрической антенны является

Описание Характеристики Отзывы Инструкция О бренде

AN-05 - стержневая антенна, предназначенная для GSM-сигналов в диапазоне частот 900/1800 МГц. Устройство имеет магнитное основание. Оно совместимо с модулями связи:

  • JA-60GSM;
  • GD-04;
  • CA-1202 и некоторыми другими.

Особенности AN-05

Антенна AN-05 чешского производства имеет продуманную конструкцию. Изделие компактно, имеет длину всего лишь 37 сантиметров. К числу преимуществ следует отнести:

  • наличие двух светодиодов, которые выступают в роли индикаторов тревоги. Они находятся под углом 180 градусов друг к другу;
  • возможность эксплуатации в широком диапазоне температур: от -10 до +65 градусов по Цельсию;
  • класс защиты IP43 (допустима эксплуатация при влажности 95 %);
  • универсальное базовое основание в комплекте поставки;
  • минимальный вес, который обеспечивает простоту установки и транспортировки.
Тип Антенна
Вес, кг 0.1

нет данных...

Чехия

Основанная в 1990 году в чешском городке Яблонец-над-Нисой, компания Jablotron специализируется на разработке и производстве систем безопасности для домов, офисов и автомобильного транспорта. В настоящее время компания Jablotron стала одним из крупнейших производителей охранных систем в Центральной Европе. В группу компаний JABLOTRON Group входит двадцать одно предприятие. В 1993 была сформирована вспомогательная компания в Тайбее, которая содействует не только в маркетинге изделий Jablotron в Азии, но и в поставке компонентов. Сейчас изделия Jablotron продаются более чем в 70 странах по всему миру. Продукция компании сертифицирована в соответствии со стандартом ISO9001. Политика качества JABLOTRON включает в себя непрерывное улучшение продуктов и услуг компании, систематический сбор замечаний и предложений клиентов, а также внимание к бизнес-партнерам и партнерам по сети. Всё это обеспечивает многолетний успех компании.

Диэлектрические антенны представляют собой сплошные стержни или трубки из диэлектрика длиной в несколько волн и с поперечными размерами, сравнимыми с волной.

Диэлектрические антенны, как и линзовые, основаны на использовании особенностей распространения радиоволн в диэлектрических средах. Однако принцип их действия совер­шенно иной.

Известно, что при переходе электромагнитных волн из среды с одной диэлектрической проницаемостью в среду с другой проницаемостью на поверхности раздела сред появ­ляются заряды и токи (так называемые поляризационные токи). Такие заряды и токи возникают и на поверхности стержней при распространении вдоль них электромагнитных волн, причем фаза и амплитуда зарядов в каждой точке по­верхности стержня зависят от скорости распространения волны. Электромагнитное поле в любой точке пространства вне стержня, создаваемое зарядами и токами, зависит от закона их распределения на поверхности стержня.

Если размеры стержня и его материал подобрать так, чтобы скорость распространения радиоволн вдоль диэлектри­ческой антенны была близка к скорости света, то максималь­ное излучение антенны будет направлено вдоль оси стержня в сторону движения волны.

Здесь мы имеем аналогию с антенной типа «волновой канал», в которой директоры также обеспечивают запазды­вание фазы волны в направлении от активного вибратора в сторону максимального излучения. В директорных антеннах нужное распределение фаз и амплитуд токов подбирается за счет выбора местоположения и длины вибраторов. В диэлек­трических же антеннах это достигается за счет выбора их размеров.

Когда диаметр стержня велик по сравнению с волной, то скорость распространения радиоволн вдоль стержня близка к скорости распространения радиоволн в диэлектрике, рав­ной , где с - скорость света, а e Д - диэлектрическая проницаемость материала стержня.

При уменьшении диаметра стержня скорость распростра­нения приближается к скорости света с .

Экспериментальные исследования показывают, что наилучшими направленными свойствами обладают такие стержни, площадь поперечного сечения которых S не превышает S max = , но не меньше S min = , где l 0 - длина рабочей волны в воздухе.

При этих размерах скорость распространения радиоволн вдоль стержня оказывается весьма близкой к скорости света.

Увеличение поперечного сечения стержня сверх значения Smax приводит к увеличению уровня боковых лепестков и не повышает усиления антенны. Снижение поперечного сече­ния против значения S min очень быстро приводит к расши­рению главного лепестка диаграммы направленности, сле­довательно, и к снижению коэффициента усиления антенны.

Длину диэлектрических стержневых антенн выбирают в пределах от 2 до 6 волн в зависимости от требуемого коэф­фициента усиления.

Если антенна в виде одного единственного стержня не обеспечивает нужной направленности, то в этом случае идут не по пути увеличения ее длины, а по пути применения си­стем из нескольких однотипных диэлектрических стержней, питаемых синфазно. Делается это потому, что дальнейшее увеличение длины диэлектрической антенны свыше 6 волн заметного выигрыша уже не дает.

На рис. 65 представлена диэлектрическая антенна из че­тырех полистироловых стержней, расположенных в один ряд, и приведены диаграммы направленности этой антенны. Так как от­дельные диэлектриче­ские стержни доста­точно диапазонны в си­лу некритичности их размеров, то при вы­полнении системы пи­тания отдельных стерж­ней по параллельной схеме, показанной на рис. 65, антенная си­стема в целом также со­храняет свои свойства в широком диапазоне волн.

Часто диэлектрические стержни делают конусообразными с сужением в сторону максимального излучения. При этом стремятся не к уменьшению веса, а к улучшению направлен­ных свойств, так как придание стержню небольшой конусно­сти снижает интенсивность побочных лепестков диаграммы направленности.

Для уменьшения поперечного сечения диэлектрические стержни изготовляют из материалов с высокой диэлектриче­ской проницаемостью, обращая при этом внимание на вели­чину потерь в этом диэлектрике, так как применение мате­риала с высоким значением диэлектрической проницаемости и большим углом потерь влечет резкое ухудшение коэффи­циента полезного действия антенны.

Возбуждение (питание) диэлектрических антенн осуще­ствляется либо вибратором, перпендикулярным оси стержня, либо волноводом, несущим основную поперечную магнитную волну. В первом случае вибратор для устранения тыльного излучения помещается в металлическую коробку, в откры­тый конец которой заделывается диэлектрический стержень (см. рис. 65). Такая коробка по существу является коротким волноводом.

Направленные свойства диэлектрических стержневых антенн практически не зависят от формы их поперечного се­чения, которое может быть круглым, квадратным и т. д. По­следнее обстоятельство весьма удобно в конструктивном от­ношении, так как сечению стержня может быть придана конфигурация питающего волновода, а сам стержень, будучи заделанным в волновод, автоматически разрешает задачу герметизации его внутренней полости.

Для наглядного представления о направленных свойствах диэлектрических антенн на рис. 66 они сопоставлены с ан­теннами, эквивалентными им по характеристике направлен­ности и коэффициенту усиления.

Диэлектрические антенны эквивалентны:

стержень длиной в 1,8 волны - плоскостной синфазной антенне, состоящей из восьми полуволновых вибраторов с рефлектором;

стержни длиной в 3,3 волны - коническому рупору длиной в 5 волн и диаметром зева в две волны;

антенная система из четырех стержней - коническому рупору, имеющему в два раза большую длину и площадь поперечного сечения.

Кроме стержневых, применяются антенны в виде полых диэлектрических трубок диаметром около волны, возбуждае­мых аналогично сплошным стержневым излучателем. Тол­щина стенок таких трубок берется в соответствии с диэлек­трической проницаемостью материала трубки, но никогда не превосходит 0,1 рабочей длины волны. Антенны из ди­электрических полых трубок часто называют оболочечными.

Оболочечные диэлектрические антенны получаются несколько более громоздкими, но они обладают меньшим весом, а в силу больших поперечных размеров - и более узкими диаграммами направленности, чем стержневые антенны тойже длины. На рис. 67 для сравнения приведены диа­граммы направленности волновода, сплошного диэлектриче­ского стержня и диэлектрической оболочечной системы.

Диэлектрические антенны применяются как в качестве самостоятельных антенн, так и облучателей, заменяя с успе­хом рупорные антенны. Вес диэлектрических антенн пропор­ционален кубу рабочей волны, что делает нерациональным их применение на волнах, превышающих 10-25 см. На бо­лее же коротких волнах диэлектрические стержневые и обо­лочечные излучатели имеют целый ряд преимуществ, к ко­торым следует отнести малые размеры при хорошей направ­ленности, возможность их использования в весьма широком диапазоне волн, малый вес и небольшую парусность.

К недостаткам диэлектрических антенн относятся слож­ность системы питания (когда антенна состоит из ряда син­фазных элементов) и наличие диэлектрических потерь, могу­щих значительно снизить к. п. д. антенны.

Диэлектрическая антенна

антенна в виде отрезка диэлектрического стержня, возбуждённого радиоволноводом или штырём коаксиального кабеля. В стержне Д. а. (рис. ) возбуждается волна особой структуры (так называемая поверхностная волна), распространяющаяся вдоль его оси, и, как следствие, на поверхности стержня возникают тангенциальные (касательные к поверхности) составляющие электрического и магнитного полей, фаза которых меняется по закону бегущей волны. По существу Д. а. представляет собой бегущей волны антенну (См. Бегущей волны антенна), состоящую из элементарных электрических и магнитных вибраторов. Её максимум излучения, как и всякой антенны бегущей волны, совпадает с осью стержня. Характер излучения Д. а. зависит от фазовой скорости (См. Фазовая скорость) распространения поверхностной волны. С увеличением диаметра стержня и диэлектрической проницаемости материала, из которого он выполнен, фазовая скорость уменьшается. Чем меньше фазовая скорость, тем больше длина стержня, при которой коэффициент направленного действия (КНД) антенны максимален (так называемая оптимальная длина), и больше максимально возможный КНД. По мере уменьшения фазовой скорости или приближения её к скорости света в окружающей среде (воздухе) диэлектрический стержень теряет волноводные свойства. Это приводит к резкому спаданию поля к концу стержня, увеличению излучения в окружающую Д. а. среду непосредственно из открытого конца радиоволновода и уменьшению эффективности Д. а. Диаметр и материал стержня обычно выбирают так, чтобы фазовая скорость была не очень близкой к скорости света (не более 0,95-0,96 скорости света). При такой фазовой скорости оптимальная длина равна 12 длинам излучаемой волны и КНД равен Диэлектрическая антенна 100. Стержень Д. а. изготовляют из диэлектрических материалов с малым затуханием электромагнитных волн в них - полистирол, фторопласт и др. Д. а. применяют преимущественно на летательных аппаратах в радиоустройствах, работающих на сантиметровых и дециметровых волнах.

О. Н. Терёшин, Г. К. Галимов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Диэлектрическая антенна" в других словарях:

    Антенна в виде сплошного или трубчатого диэлектрич. (полистирол, полиэтилен) стержня, возбуждаемого радиоволноводом или коаксиальным кабелем (см. рис.). По существу Д. а. представляет собой бегущей волны антенну и применяется преим. в синтезир.… … Большой энциклопедический политехнический словарь

    Отрезок диэлектрического стержня, излучающий радиоволны при возбуждении его волноводом или коаксиальной линией. Используется преимущественно на летательных аппаратах в радиоустройствах, работающих на сантиметровых и дециметровых волнах … Большой Энциклопедический словарь

    Отрезок диэлектрического стержня, излучающий радиоволны при возбуждении его волноводом или коаксиальной линией. Используется преимущественно на летательных аппаратах в радиоустройствах, работающих на сантиметровых и дециметровых волнах. * * *… … Энциклопедический словарь

    диэлектрическая антенна - dielektrinė antena statusas T sritis radioelektronika atitikmenys: angl. dielectric antenna vok. dielektrische Antenne, f rus. диэлектрическая антенна, f pranc. antenne diélectrique, f … Radioelektronikos terminų žodynas

    Устройство для излучения и приёма радиоволн. Передающая А. преобразует энергию электромагнитных колебаний высокой частоты, сосредоточенную в выходных колебательных цепях радиопередатчика, в энергию излучаемых радиоволн. Преобразование… …

    Антенна - (осн. типы): симметричный (а) и несимметричный (б) вибраторы; диполь Надененко (в); волновой канал (г); рамочная (д); логопериодическая вибраторная (е); рупорная (ж); линзовая (з); волноводная щелевая (и); диэлектрическая (к). АНТЕННА (от… … Иллюстрированный энциклопедический словарь

    Направленная антенна, вдоль геометрической оси которой распространяется бегущая волна (См. Бегущие волны) электромагнитных колебаний. Б. в. а. выполняют либо из дискретных излучателей, расположенных вдоль оси на некотором расстоянии друг… … Большая советская энциклопедия

    Антенна радиотелескопа РТ 7.5 МГТУ им. Баумана. РФ, Московская область, Дмитровский район. Диаметр зеркала 7,5 метра, рабочий диапазон длин волн: 1 4 мм Антенна устройство для излучения и приёма радиоволн (разновидности электромагнитного… … Википедия

    - (по имени французского физика 17 в. Н. Кассегрена, N. Cassegrain) зеркальная антенна (См. Зеркальные антенны), состоящая из облучателя, главного и вспомогательных зеркальных отражателей электромагнитной энергии (зеркал), собранных по… … Большая советская энциклопедия

    Антенна, в к рой сферич. или цилиндрич. эл. магн. волна, создаваемая первичным излучателем (вибратор, открытый конец радиоволновода, рупор и т. п.), преобразуется в плоскую волну (или наоборот) с помощью преломляющих сред. Физический… … Физическая энциклопедия

Выбор материала диэлектрика

Для изготовления излучателя выберем полистирол, параметры которого имеют следующие значения:

Диэлектрическая проницаемость;

Тангенс диэлектрических потерь.

Определение диаметра стержня

Чтобы обеспечить преобразование большей части энергии в поверхностную волну, стержень у возбудителя делают толстым, а затем плавно уменьшают, чтобы приблизить фазовую скорость х ф к скорости света. Рекомендуется выполнять стержни диаметром:

При МГц м, значит:

Расчет коэффициента замедления

По выбранному значению () и по графику из методической литературы (2, стр 41) находим коэффициент замедления, он равен:

При 0.83 1.205

Расчет длины стержня антенны

Длина диэлектрического стержня выбирается исходя из заданной ширины диаграммы направленности антенны.

При =40…45 соответственно L1.588…1.255 м.

С другой стороны, максимальный коэффициент направленного действия антенны достигается при длине стержня, равной

Отсюда L=1.723м.

Из этих выражений выбираем оптимальную длину стержня: L м

Расчет КНД антенны

Коэффициент направленного действия определяется по формуле:

Расчет диаграмм направленности

При расчете диаграммы направленности конической диэлектрической антенны используют выражения для расчёта диаграммы направленности цилиндрической антенны среднего диаметра, при этом предполагается, что волной в стержне, бегущей с постоянным замедлением вдоль его длины и отражением от конца стержня пренебрегают, тогда выражение для расчета диаграммы направленности получается как у линейной антенны с непрерывным распределением излучающих элементов, в которых распределение токов по длине соответствует закону бегущей волны.

где - волновое число, - угол между осью антенны и направлением в точку наблюдения.


Рис 2.


Рис 3.

диэлектрической стержневой антенны в полярной системе координат

диэлектрический антенна стержень

Расчет согласующего устройства

Для передачи с наименьшими потерями энергии в коаксиальном кабеле, следует создать режим бегущей волны. Чтобы получить режим бегущей волны, надо обеспечить равенство нагрузочного сопротивления и волнового сопротивления линии т.е. согласовать линию с нагрузкой. Однако такое согласование, при котором коэффициент бегущей волны (КБВ = 1) получить трудно. Практически уже хорошо, если КБВ = 0,8 ч 0,9. При этом ухудшение работы линии незначительно.

Для согласования волнового сопротивления коаксиального кабеля W ф с входным сопротивлением антенны необходимо найти нужную величину действующей высоты возбудителя (штыря) h д, при которой R вх =W.

Расстояние от закорачивающей стенки до оси штыря z 1 , выбирается равным в /4, где в - длина волны в волноводе с волной Н 11 при наличии диэлектрика

а волновое сопротивление круглого волновода, заполненного диэлектриком для волны H 11 , равно

417.034 Ом, отсюда 0.781 м и z1 0.195 м

Тогда действующая высота штыря может быть найдена из выражения:

Возьмем для расчета коаксиальный кабель с внешним проводником из круглых проволок в ПЭ оболочке РК 50-33-17 с максимально допустимой мощностью на частотах 100 МГц и 1 ГГц 5 кВт и 0.9 кВт соответственно. Его волновое сопротивления 50 Ом, то 0.059 м

Геометрическая высота находится из соотношения:

Длина круглого волновода от вибратора до его раскрыва z 2 выбирается из условий обеспечения необходимого затухания высших типов волн. Обычно считают, что ослабление поля ближайшей высшей волны Е 01 должно быть не менее 10…20 дБ (100 раз по мощности). Если принять величину ослабления равную 20 дБ, тогда

При расчетах оказалось, что под корнем отрицательное число, это означает, что волна находится в докритическом режиме и не затухает. В этом случае надо исключить возможность ее возбуждения, для этого длину возбудителя примем 0.75 0.206. При этом закритическое затухание необходимо обеспечить для следующей волны высшего типа с, тогда м

Для согласования излучателя с питающим фидером следует применить четвертьволновый согласующий трансформатор с волновым сопротивлением равным

Расчет максимального напряжения в питающем фидере

При выборе коаксиального кабеля следует учесть не только коэффициент затухания на максимальной рабочей частоте, но и на надёжность его на электрический пробой. С этой целью производится его проверка по допустимости максимального рабочего напряжения с максимально допустимым напряжением для данной марки кабеля.

Для проверки надежности работы с точки зрения электрического пробоя коаксиального кабеля определим

КБВ можно принять равным (0.5…0.7), примем КБВ = 0.5, тогда

Напряжение короны коаксиального кабеля РК 50-33-17 кВ, то 4250 В, значит условие выполняется.

Расчет КПД фидерной линии

Длина фидерной линии выбирается из конструктивных соображений (10…100 м), примем l = 10 м

Коэффициент затухания фидера, дБ/м, находится из справочных значений

где 0.03 дБ на частоте 100 МГц, значит 0.062 дБ/м.

Значение коэффициента затухания подставляются в Нп/м из формулы

значит = 0.007

Модуль коэффициента отражения от конца цилиндрического стержня может быть оценен по формуле

Для конического стержня коэффициент отражения значительно меньше (обычно в 2…5 раза), примем 0.068. Тогда расчетное КПД по приведенной выше формуле составляет 0.868.

Расчет КПД антенно-фидерного устройства

Расчет производится по формуле:

КПД антенны определяется в основном потерями в диэлектрике и составляют примерно 0.5…0.7. Примем 0.7, тогда 0.521

Сделаем еще несколько замечаний, относящихся к КПД диэлектрической стержневой антенны.

Во-первых, отметим, что диэлектрические стержневые антенны сами по себе не имеют резонансных элементов и в этом смысле являются широкополосными (если только коэффициент замедления не выходит за пределы допустимых значений). Ширина рабочей полосы частот в диэлектрической антенне обусловливается резонансными свойствами возбуждающего элемента, т, е. вибратора в металлическом волноводе.

Во-вторых, диэлектрик антенны должен иметь малые потери, в противном случае КПД будет низок. Кроме того, возбуждающий вибратор в металлическом волноводе должен располагаться вне диэлектрика. Это приводит к повышению КПД вследствие того, что возбуждаемые вибратором высшие типы волн затухают вблизи него и не проникают в диэлектрическую среду.

Конструкция антенны

Конструкция антенны соответствует Рис 1, диэлектрический стержень изготавливается конусообразный, выбираются рассчитанные геометрические размеры и принятые для расчета материалы.


Диэлектрические стержневые антенны относятся к антеннам бегущей волны с замедленной фазовой скоростью. Они применяются на границе сантиметрового и дециметрового диапазонов волн в полосе частот от 2 до 10 Ггц.

На рис. 6 приведена наиболее типичная схема диэлектрической стержневой антенны. Она представляет собой диэлектрический стержень1, возбуждаемый круглым волноводом 2 с возбудителем 3 и питающим фидером 4. В зависимости от требований, предъявляемых к антенне, поперечное сечение стержня, возбудитель и его питание могут изменяться. Наиболее часто используются цилиндрические и конические стержни.

Диэлектрическая стержневые антенна: 1-диэлектрический стержень; 2-возбуждающее устройство; 3-возбудитель; 4-питающий фидер.

Рис. 6

Спиральные антенны.

Спиральные антенны относятся к классу антенн бегущей волны. Они представляют собой металлическую спираль, питаемую коаксиальной линией. Существуют цилиндрические, конические и плоские спиральные антенны.

Примеры практического использования спиральных антенн приведены на фото. На первой фотографии показана часть советской космической станции «Венера» с установленной на ней логарифмической двухзаходной спиральной антенной, намотанной из плоской металлической ленты на диэлектрическом каркасе. На второй фотографии показана антенна наземной станции космической связи, представляющая собой решётку из четырёх цилиндрических спиральных антенн.

Лучшие статьи по теме