Как настроить смартфоны и ПК. Информационный портал

Цифровые фильтры изображений. Описание Image Processing Toolbox

Под фильтрацией изображений понимают операцию, имеющую своим результатом изображение того же размера, полученное из исходного по некоторым правилам. Обычно интенсивность (цвет) каждого пикселя результирующего изображения обусловлен интенсивностями (цветами) пикселей, расположенных в некоторой его окрестности в исходном изображении.

Правила фильтрации могут быть самыми разнообразными. Фильтрация изображений является одной из самых фундаментальных операций компьютерного зрения, распознавания образов и обработки изображений. С той или иной фильтрации исходных изображений начинается работа подавляющего большинства методов обработки изображений.

Линейные фильтры имеют очень простое математическое описание. Будем считать, что задано исходное полутоновое изображение A, и обозначим интенсивности его пикселей A(x, y). Линейный фильтр определяется вещественнозначной функцией h (ядром фильтра), заданной на растре. Сама фильтрация производится при помощи операции дискретной свертки (взвешенного суммирования):

B(x, y) = h(i, j) ③③A(x, y) = h(i, j) A(x-i, y-j). (17.3.1)

Результатом служит изображение B. Обычно ядро фильтра отлично от нуля только в некоторой окрестности N точки (0, 0). За пределами этой окрестности h(i, j) равно нулю, или очень близко к нему и им можно пренебречь. Суммирование производится по (i, j)  N, и значение каждого пикселя B(x, y) определяется пикселями изображения A, которые лежат в окне N, центрированном в точке (x, y) (обозначение - множество N(x, y)). Ядро фильтра, заданное на прямоугольной окрестности N, может рассматриваться как матрица m на n, где длины сторон являются нечетными числами. При задании ядра матрицей ее следует центрировать. Если пиксель (x, y) находится в окрестности краев изображения, то координаты A(x-i, y-j) для определенных (i, j) могут соответствовать несуществующим пикселям A за пределами изображения. Данную проблему можно разрешить несколькими способами.

Не проводить фильтрацию для таких пикселей, обрезав изображение B по краям, или применив для их значений исходные значения изображения А.

Не включать отсутствующий пиксель в суммирование, распределив его вес h(i, j) равномерно среди других пикселей окрестности N(x, y).

Доопределить значения пикселей за границами изображения при помощи экстраполяции.

Доопределить значения пикселей за границами изображения, при помощи зеркального продолжения изображения.

Выбор способа производится с учетом конкретного фильтра и особенностей изображения.

Сглаживающие фильтры. Простейший прямоугольный сглаживающий фильтр радиуса r задается при помощи матрицы размера (2r+1) × (2r+1), все значения которой равны 1/(2r+1) 2 , а сумма значений равна единице. Это двумерный аналог низкочастотного одномерного П-образного фильтра скользящего среднего. При фильтрации с таким ядром значение пикселя заменяется усредненным значением пикселей в квадрате со стороной 2r+1 вокруг него. Пример маски фильтра 3× 3:

.

Одним из применений фильтров является шумоподавление. Шум меняется независимо от пикселя к пикселю и, при условии, что математическое ожидание значения шума равно нулю, шумы соседних пикселей при суммировании будут компенсировать друг друга. Чем больше окно фильтрации, тем меньше будет усредненная интенсивность шума, однако при этом будет происходить и соответствующее размытие значащих деталей изображения. Образом белой точки на черном фоне при фильтрации (реакция на единичный импульс) будет равномерно серый квадрат.

Шумоподавление при помощи прямоугольного фильтра имеет существенный недостаток: все пиксели в маске фильтра на любом расстоянии от обрабатываемого оказывают на результат одинаковый эффект. Несколько лучший результат получается при модификации фильтра с увеличением веса центральной точки:

.

Более эффективное шумоподавление можно осуществить, если влияние пикселей на результат будет уменьшаться с увеличением расстояния от обрабатываемого. Этим свойством обладает гауссовский фильтр с ядром: h(i, j) = (1/2 2) exp(-(i 2 +j 2)/2   Гауссовский фильтр имеет ненулевое ядро бесконечного размера. Однако значения ядра фильтра очень быстро убывает к нулю при удалении от точки (0, 0), и потому на практике можно ограничиться сверткой с окном небольшого размера вокруг (0, 0), например, взяв радиус окна равным 3σ.

Гауссовская фильтрация также является сглаживающей. Однако, в отличие от прямоугольного фильтра, образом точки при гауссовой фильтрации будет симметричное размытое пятно, с убыванием яркости от середины к краям. Степень размытия изображений определяются параметром σ.

Контрастоповышающие фильтры . Если сглаживающие фильтры снижают локальную контрастность изображения, размывая его, то контрастоповышающие фильтры производят обратный эффект и, по существу, являются фильтрами высоких пространственных частот. Ядро контрастоповышающего фильтра в точке (0, 0) имеет значение, большее 1, при общей сумме значений, равной 1. Например, контрастоповышающими фильтрами являются фильтры с ядром, задаваемым матрицами:

. .

Пример применения фильтра приведен на рис. 17.3.1. Эффект повышения контраста достигается за счет того, что фильтр подчеркивает разницу между интенсивностями соседних пикселей, удаляя эти интенсивности друг от друга. Этот эффект будет тем сильней, чем больше значение центрального члена ядра. Характерным артефактом линейной контрастоповышающей фильтрации являются заметные светлые и менее заметные темные ореолы вокруг границ.

Разностные фильтры – это линейные фильтры, задаваемые дискретными аппроксимациями дифференциальных операторов (по методу конечных разностей). Данные фильтры играют важнейшую роль во многих приложениях, например, для задач поиска границ на изображении.

Простейшим дифференциальным оператором является взятие производной по x-координате d/dx, который определен для непрерывных функций. Распространенными вариантами аналогичных операторов для дискретных изображений являются фильтры Прюита (Prewitt) и Собеля (Sobel):

. .

Фильтры, приближающие оператор производной по y-координате d/dy, получаются путем транспонирования матриц.

Простейший алгоритм вычисления нормы градиента по трем смежным точкам:

G(x, y) =
.

Применяется также упрощенная формула вычислений:

Вычисление нормы градиента по четырем смежным точкам (оператор Робертса):

В алгоритме Собеля используется восемь отсчетов яркости в окрестностях центральной точки:

G(x, y) =
, G(x, y) 
,

Gx x , y = [ A x -1, y -1 +2 A x -1, y + A x -1, y +1 ] - [ A x +1, y -1 +2 A x +1, y + A x +1, y +1 ],

Gy x,y = - .

Наряду с более точным определением нормы градиента алгоритм Собеля позволяет определять и направление вектора градиента в плоскости анализа изображения в видеугла  между вектором градиента и направлением строк матрицы:

(x, y) = argtg(Gy x,y /Gx x,y).

В отличие от сглаживающих и контрастоповышающих фильтров, не меняющих среднюю интенсивность изображения, в результате применения разностных операторов получается, как правило, изображение со средним значением пикселя близким к нулю. Вертикальным перепадам (границам) исходного изображения соответствуют пиксели с большими по модулю значениями на результирующем изображении. Поэтому разностные фильтры называют также фильтрами выделения границы объектов.

Аналогично вышеприведенным фильтрам, по методу конечных разностей можно составить фильтры для других дифференциальных операторов. В частности, важный для многих приложений дифференциальный оператор Лапласа (лапласиан) = 𝝏 2 /𝝏x 2 + 𝝏 2 /𝝏y 2 можно приблизить для дискретных изображений фильтром с матрицей (один из вариантов):

.

Как видно на рис. 17.3.2, в результате применения дискретного лапласиана большие по модулю значения соответствуют как вертикальным, так и горизонтальным перепадам яркости. Фильтр является, таким образом, фильтром, находящим границы любой ориентации. Нахождение границ на изображении может производиться путем применения этого фильтра и взятия всех пикселей, модуль значения которых превосходит некоторый порог.

Однако такой алгоритм имеет существенные недостатки. Главный из них - неопределенность в выборе величины порога. Для разных частей изображения приемлемый результат обычно получается при существенно разных пороговых значениях. Кроме того, разностные фильтры очень чувствительны к шумам изображения.

Двумерная циклическая свертка. Как и для одномерных сигналов, двумерная свертка может выполняться в области пространственных частот с использованием алгоритмов быстрого преобразования Фурье и перемножением двумерных спектров изображения и ядра фильтра. Она также является циклической, и выполняется обычно в скользящем варианте. С учетом цикличности, для вычисления постоянного шаблона спектра ядра размеры маски фильтра ядра удваиваются по осям и дополняются нулями, и эти же размеры маски используются для выделения скользящего по изображению окна, в пределах которого и выполняется БПФ. Реализация КИХ фильтра с помощью БПФ особенно эффективна, если фильтр имеет большую опорную область.

Нелинейные фильтры . В цифровой обработке изображений широко применяются нелинейные алгоритмы на основе ранговой статистики для восстановления изображений, поврежденных различными моделями шумов. Они позволяют избежать дополнительного искажения изображения при удалении шума, а также значительно улучшить результаты работы фильтров на изображениях с высокой степенью зашумленности.

Введем понятие M-окрестности элемента изображения A(x, y), который является для этой окрестности центральным. В простейшем случае M-окрестность содержит N-пикселей – точки, попадающие в маску фильтра, включая (или не включая) центральный. Значения этих N-элементов можно расположит в вариационном ряду V(r), ранжированном по возрастанию (или убыванию), и вычислить определенные моменты этого ряда, например, среднее значение яркости m N и дисперсии d N . Вычисление выходного значения фильтра, которым заменяется центральный отсчет, выполняется по формуле:

B(x, y) = А(x, y) + (1-)m N . (17.3.2)

Значение коэффициента  связывается определенной зависимостью со статистикой отсчетов в окне фильтра, например:

d N /(d N + k d S), (17.3.3)

где d S – дисперсия шумов по изображению в целом или по S-окрестности при S > M и MS, k - константа доверия дисперсии S-окрестностей. Как следует из этой формулы, при k=1 и d N  d S имеет место   0.5, а значение B(x, y) = (А(x, y) + m N)/2, т.е. складываются в равной степени от значений центрального отсчета и среднего значения пикселей его M-окрестности. При увеличении значений d N происходит увеличение вклада в результат значения центрального отсчета, при уменьшении – значения m N . Весомость вклада средних значений по M-окрестности можно изменять значением коэффициента k.

Выбор статистической функции и характер зависимости от нее коэффициента  может быть достаточно многообразным (например, по дисперсиям разностей отсчетов в М-окрестности с центральным отсчетом), и зависит как от размеров апертуры фильтра, так и от характера изображений и шумов. По существу, значение коэффициента  должно задавать степень поврежденности центрального отсчета и, соответственно, функцию заимствования для его исправления отсчетов из М-окрестности.

Наиболее простыми и распространенными типами нелинейных фильтров для обработки изображений являются пороговые и медианные фильтры.

Пороговая фильтрация задается, например, следующим образом:

B(x, y) =

Величина p является порогом фильтрации. Если величина центральной точки фильтра превышает среднее значение отсчетов m N в ее М-окрестности на величину порога, то она заменяется средним значением. Значение порога может быть как константой, так и функционально зависимым от величины центральной точки.

Медианная фильтрация определяется следующим образом:

B(x, y) = med {M(x, y)},

т.е. результат фильтрации есть медианное значение пикселей окрестности, форма которой определяется маской фильтра. Медианная фильтрация способна эффективно удалять из изображения помехи, независимо воздействующие на отдельные пиксели. Например, такими помехами являются "битые" пиксели при цифровой съемке, "снеговой" шум, когда часть пикселей заменяется на пиксели с максимальной интенсивностью, и т.п. Преимущество медианной фильтрации заключается в том, что "горячий" пиксель на темном фоне будет заменен темным, а не "размазан" по окрестности.

Медианная фильтрация обладает выраженной избирательностью по отношению к элементам массива, представляющим собой немонотонную составляющую последовательности чисел в пределах апертуры фильтра. В то же время монотонную составляющую последовательности медианный фильтр оставляет без изменений. Благодаря этой особенности, медианные фильтры при оптимально выбранной апертуре сохраняют без искажений резкие границы объектов, подавляя некоррелированные или слабо коррелированные помехи и малоразмерные детали.

Фильтры экстремумов определяются по правилам:

B min (x, y) = min {M(x, y)},

B max (x, y) = max {M(x, y)},

т.е. результат фильтрации есть минимальное и максимальное значения пикселей в маске фильтра. Применяются такие фильтры, как правило, для бинарных изображений.

Обзор методов фильтрации и сегментации цифровых изображений

Источник: Стругайло В.В. Обзор методов фильтрации и сегментации цифровых изображений // Наука и образование. Электронное научно-технические издание. // Московский автомобильно-дорожный государственный технический университет, 2012. — С. 270-281.

Введение

Методы цифровой обработки позволяют преобразовывать изображения для улучшения их визуального восприятия. Также в данной области решаются задачи изменения представления изображений для обеспечения их хранения, передачи, визуализации в электронном виде и дальнейшего анализа заложенной в них информации. Цифровая обработка изображений является бурно развивающейся областью науки. Исследование и разработка методов и алгоритмов обработки и анализа информации представленной в виде цифровых изображений является очень актуальной задачей.

В данной работе осуществляется обзор методов фильтрации и сегментации изображений. Приводятся примеры рассмотренных методов для решения задач улучшения визуального представления и выделения контуров объектов на изображениях.

Фильтрация изображений

Цифровые изображения подвержены воздействию различных типов шумов, которые могут возникать от способа получения изображений, технологий передачи информации, методов оцифровывания данных. Процесс устранения различных видов шумов на изображениях, называется фильтрацией.

При осуществлении фильтрации яркостные характеристики каждой точки цифрового изображения, заменяются другим значением яркости, которое признается в наименьшей степени искаженным помехой . Выделяют частотную и пространственную фильтрацию .

Частотные методы преобразований изображений основываются на идее Фурье преобразования, смысл которого заключается в представлении исходной функции в виде суммы тригонометрических функций различных частот, умноженных на заданные коэффициенты. В случае, если функция является периодической такое представление называется рядом Фурье. Иначе, непериодическая функция, имеющая конечную площадь под графиком, может быть выражена в виде интеграла от тригонометрических функций, умноженных на некоторую весовую функцию . Такой вариант называется преобразованием Фурье и в большинстве практических задач оказывается более полезным, чем ряд Фурье. Важным свойством является то, что функцию, представленную Фурье-преобразованием, после осуществления над ней преобразований можно обратно вернуть к исходному виду. Таким образом, данный подход позволяет обрабатывать функцию в частотной области, после чего без потери информации вернуться к исходному виду. Для решения задач фильтрации изображений преобразование Фурье также могут применяться. В практическом приложении реализация частотных подходов может быть аналогична пространственным методам фильтрации .

Пространственные методы улучшения изображений применятся к растровым изображениям, представленным в виде двумерных матриц. Принцип пространственных алгоритмов заключается в применении специальных операторов к каждой точке исходного изображения. В качестве операторов выступают прямоугольные или квадратные матрицы называемые масками, ядрами или окнами . Чаще всего маска представляет собой небольшой двумерный массив, а методы улучшения, базирующиеся на таком подходе, часто называют обработкой по маске или фильтрацией по маске.

При осуществлении линейной фильтрации отклик маски задается суммой произведений пикселей в области покрытия фильтра. В качестве линейного сглаживающего фильтра используется усредняющий фильтр выходным значением, которого является среднее значение по окрестности маски фильтра . Подобный фильтр используется для задач удаления зернистости изображения вызванной импульсным шумом . Общая формула отклика g(x, y) усредняющего фильтра, предназначенного для фильтрации изображения f с размерами M×N, имеет вид :

где w(s, t) — элемент ядра свертки изображения, имеющей размеры m×n, s∈[−m/2, m/2], t∈[−n/2, n/2] — координаты ядра свертки по оси абсцисс и ординат; x=0,1,2,..,M−1, y=0,1,2,..,N−1 — координаты исходного изображения f.

В форме удобной для программного представления подобный фильтр можно представить в виде:

где — элемент матрицы изображения после фильтрации; — элемент массива ядра свертки изображения, имеющий размеры m×n; — элемент матрицы исходного изображения.

В основе адаптивной фильтрации положен винеровский фильтр, являющийся одним из типов линейного фильтра для адаптивной локальной обработки изображений . Если значение среднеквадратичного отклонения интенсивностей пикселей в данной локальной области большое, то винеровский фильтр выполняет небольшое сглаживание и, наоборот, при меньшем отклонении область сглаживания больше . Этот подход часто бывает более эффективным, чем обычная линейная фильтрация. Преимущество адаптивный фильтра еще заключается в том, что он сохраняет края и другие высокочастотные части объектов изображения. Однако, винеровский фильтр требует большего времени для вычислений, чем линейный фильтр .

Среднее значение яркости вычисляется для центрального пикселя маски W i,j , содержащей значения яркости исходного изображения в покрытой маской локальной области изображения по формуле:

Дисперсия маски равна:

В данном алгоритме для каждого нового положения окна маски заново вычисляются соответствующие значения.

Сглаживание шума оценивается через среднее квадратичное отклонение:

На рисунке 1 приведены результаты фильтрации при наложении импульсного шума на цифровое изображение. На рисунке 2 представлены результаты фильтрации наложенного на цифровое изображение гауссовского белого шума.

Рисунок 1 — Результаты фильтрации импульсного шума на изображении


Рисунок 2 — Результаты фильтрации белого шума на изображении

Методы сегментации изображений

Конечный результат анализа изображений во многом определяется качеством сегментации , а степень детализации выделяемых характеристик зависит от конкретной задачи. Поэтому не существует отдельного метода или алгоритма подходящего для решения всех типов задач сегментации, каждый из методов имеет свои достоинства и недостатки. В большинстве случаев выбирается один или несколько алгоритмов, и модифицируются под специфичные условия задачи.

Сегментация решает в общем смысле две основные задачи :

  • разделение изображения на части, для осуществления дальнейшего анализа;
  • изменение формы описания элементов изображения, что позволяет представить точки как высокоуровневые структуры, обеспечивающие эффективность дальнейшего анализа изображения.

Ввыделяются различные классификации методов, но большинство из них основываются на двух следующих свойствах сигнала яркости — это разрывность и однородность.

Разделение изображения на части базируется на идеях, основанных на резких перепадах яркости. Изменение формы описания элементов изображения основывается на разделении изображения на однородные области с учетом заранее выбранных критериев .

К методам на основе разрывности яркости относится обнаружение точек линий и перепадов . При обнаружении точек и линий с помощью специальных масок организуется соответствующий поиск. В качестве методов обнаружения перепадов используются производные и градиенты от функций яркости, такие методы основаны на более общих идеях .

Методы пороговой обработки основываются на идеях разделения значимых характеристик по некоторому порогу. Порог может быть глобальным, то есть определенным на всем изображении или локальным, который определен на некоторой области .

Метод выращивания областей, основывается на обнаружении разрывов яркости. В методах выделяются несколько центральных точек или групп точек, после чего, к ним присоединяются пиксели, удовлетворяющие заданным условиям .

Гистограммные методы основаны на выборе минимальных и максимальных значений или интервалов между экстремумами .

Методы на основе преобразований Хафа, основываются на связывании точек друг с другом путем предварительного выяснения их принадлежности к некоторой кривой заданной формы или обнаружения прямых и кривых линий по семейству заданных прямолинейных отрезков и дуг .

Методы теории графов, основываются на обнаружении и связывании контуров с помощью представления отрезков контуров в виде графа и осуществлении поиска на этом графе путей, соответствующих искомым контурам .

Методы водоразделов заключается в поиске линий разделяющих локальные минимумы и максимумы значений яркостей элементов изображения .

Существует множество методов решающих задачи сегментации, как и подходов к их классификации. Для сравнения методов сегментации цифровых изображений, были смоделированы методы, представляемые в виде масок. Принцип работы таких методов основан на разности яркости элементов и фона изображения . Математическое обоснование методов заключается в вычислении производных, представленных для цифровых изображений в виде дискретных приближений градиента. В качестве градиентных методов выделяют операторы, представляющие собой матричные маски :

  • перекрестный оператор Робертса (Roberts" Crossoperator);
  • операторПревитта (Prewitt method, Compass Edge Detector);
  • операторСобела (Sobel operator).

Оператор Робертса прост в реализации и обладает высоким быстродействием, однако сильно чувствителен к помехам . На практике для вычисления дискретных градиентов чаще всего используются операторы Превитта и Собела. Маски оператора Превитта проще реализовать, чем маски оператора Собела, однако у последнего оператора влияние шума угловых элементов маски несколько меньше, что существенно при работе с производными . Следует отметить, что у каждой из масок сумма коэффициентов равна нулю .

Оператор Робертса использует четыре значения яркости на изображении и имеет следующий вид:

где — элемент матрицы исходного изображения.

Оператор Собела использует восемь отсчетов яркости в области анализируемого элемента:

Матрицы оператора Собела имеют вид :

где: E — матрица исходного изображения.

В программном представлении изображения :

Оператор Превитта подобен оператору Собела и отличается от него маской. Матрицы оператора Собела имеют вид :

В качестве методов основанных на производной второго порядка выделяют оператор Лапласиана . Данный оператор обнаруживает границы в местах смены знака производной функции яркости. Но оператор лапласиана очень чувствителен к шуму. Кроме того, использование модуля лапласиана приводит к удвоению контуров, что дает нежелательный эффект и усложняет сегментацию . С целью уменьшить влияние шума часто используют лапласиан в сочетании со сглаживанием, например, по методу Гаусса. Такое сочетание называют оператором лапласиан гауссиана (LaplacianofGaussian — LoG) .

Маска оператора Лапласиана гауссиана создается по формуле:

где σ — среднеквадратичное отклонение распределения Гаусса. Маска фильтра имеет вид:

где a — параметр в диапазоне .

Еще одним часто реализуемым программно методом является Canny . Фактически это набор последовательно применяемых алгоритмов. Данный подход устойчивый к шуму и дает, как правило, лучшие результаты по сравнению с градиентными методами. Но, так как это в принципе набор алгоритмов, то и быстродействие данного метода уступает более простым операторам.

На рисунке 3 приводятся результаты сегментации цифрового изображения с помощью рассмотренных алгоритмов.

Рисунок 3 — Результаты сегментации изображения

Заключение

На основе реализованных методов фильтрации делается вывод, что для импульсных помех более подходит медианный фильтр, хорошо сохраняющий границы элементов и обладающий быстродействием. Для удаления белого шума наилучшие результаты показаны адаптивным винеровским фильтром.

Градиентные алгоритмы, применяемые для выделения контуров элементов изображений более просты в реализации программными средствами, однако результаты, получаемые с их помощью, зависят от качества исследуемых изображений. Качество выделения контуров методом Cannyвыше. Однако данный алгоритм медленнее, что становится заметно на большом количестве анализируемых изображений.

Список использованной литературы

1. Гонсалес Р., Вудс Р. Цифровая обработка изображений. — М.: Техносфера, 2006. — 1072 с.
2. Грузман И.С., Киричук В.С., Косых В.П., Перетягин Г.И., Спектор А.А. Цифровая обработка изображений в информационных системах: Учеб. пособие. — Новосибирск.: Изд-во НГТУ, 2003. — 352 с.
3. Сато Ю. Обработка сигналов. Первое знакомство. 2-е издание. — М.: Додэка XXI, 2009. — 176 с.
4. Оппенгейм А. Шафер Р. Цифровая обработка сигналов. 2-е издание. — М.: Техносфера, 2007. — 856 с.
5. Лайонс Ричард. Цифровая обработка сигналов: 2 изд. — М.: ООО Бином-Пресс, 2006. — 656 с.
6. Сергиенко А.Б. Цифровая обработка сигналов. — СПб.: Питер, 2007. — 752 с.
7. Фисенко В.Т., Фисенко Т.Ю., Компьютерная обработка и распознавание изображений: учеб. пособие. — СПб: СПбГУ ИТМО, 2008. — 192 с.
8. Яне Б. Цифровая обработка изображений. — М.: Техносфера, 2007. — 584 с.
9. Шапиро Л., Стокман Дж. Компьютерное зрение. — М.: БИНОМ. Лаборатория знаний, 2006. — 752 с.

Множество подходов к улучшению изображений распадается на две категории: методы обработки в пространственной области (пространственные методы) и методы обработки в частотной области (частотные методы). К пространственной области относится совокупность пикселей, составляющих изображение. Функция предварительной обработки в пространственной области записывается в виде

где f (x , y ) – входное изображение,

g (x , y ) – выходное (обработанное) изображение,

h – оператор функции f , определенный в некоторой области (x , y ).

Операции такого вида относятся к общему классу операций над соседними элементами . Эти операции являются основным инструментарием принизкоуровневой обработке изображений илиобработке изображений в пространственной области .

Основным подходом при определении окрестности точки (x , y ) является использование квадратной или прямоугольной области части изображения с центром в точке (x , y ). Центр этой части изображения перемещается от пикселя к пикселю начиная, например, с левого верхнего угла. При этом для получения g (x , y ) оператор применяется для каждого положения (x , y ). Хотя используются иногда и другие формы окрестности (например, круг), квадратные формы более предпочтительны из-за простоты их реализации.

Один из наиболее применяемых методов пространственной области основан на использовании фильтров (масок свертки, шаблонов, окон). Обычно маска фильтра представляет собой небольшую (например, размерность 3*3) двумерную систему, коэффициенты которой выбираются таким образом, чтобы обнаружить заданное свойство изображения (рис. 1.5, а).

Рис. 1.5: а – маска фильтра; б – коэффициенты маски фильтра

Если величины w 1 ,w 2 ,…,w 9 представляют собой коэффициенты, маски пикселя (x , y ) и его восьми соседей (рис.1.5, б), то алгоритм можно представить как выполнение следующей операции на окрестности 3*3 точки (x , y ) :

Под задачей фильтрации изображений в широком смысле понимают любые процедуры обработки изображений, при которых на вход процедуры подается растровое изображение и на выходе формируется растровое изображение. Однако чаще под «фильтрацией» понимают так называемую помеховую фильтрацию . Главная цель помеховой фильтрации заключается в такой обработке изображений, при которой результат оказывается более подходящим с точки зрения конкретного применения. В общем случае можно выделить линейные фильтры (сглаживающие фильтры, контрастоповышающие фильтры, разностные фильтры) и нелинейные фильтры (медианный фильтр).

Приведем краткое описание наиболее распространенных методов фильтрации.

Низкочастотный фильтр – ослабляет высокочастотные компоненты и усиливает роль низкочастотных. Частота в применении к изображениям отражает количество имеющихся в изображении деталей. Резкие перепады яркости, помехи и шумы являются примером высокочастотных элементов в изображении. Сглаживание изображения реализуется с помощью следующих ядер:

,

,

.

Высокочастотный фильтр – ослабляет низкочастотные компоненты в изображении и усиливает роль высокочастотных. Фильтры высокой частоты применяются для выделения таких деталей, как контуры, границы или для повышения резкости изображения. Каждый скачок яркости и каждый контур представляют собой интенсивные детали, связанные с повышенными частотами. Выделение высокочастотных компонент осуществляется с помощью следующих ядер:

,

,

.

Оператор Робертса. Оператор Робертса является примером нелинейного фильтра. Преобразование каждого пикселя перекрёстным оператором Робертса может показать производную изображения вдоль ненулевой диагонали, и комбинация этих преобразованных изображений может также рассматриваться как градиент от двух верхних пикселов к двум нижним. Оператор Робертса используется ради быстроты вычислений, но проигрывает в сравнении с альтернативами из-за значительной проблемы чувствительности к шуму. Он даёт линии тоньше, чем другие методы выделения границ.

В обработке участвуют четыре пикселя, расположенные следующим образом (рис. 1.6).

Рис. 1.6. Пиксели, участвующие в обработке оператором Робертса

Отклик оператора Робертса:

Ядра свертки в данном случае будут выглядеть таким образом:

,

.

Свертка для каждого ядра вычисляется отдельно. В качестве отклика данного фильтра выступает величина

, (1.17)

где P и Q – отклик ядер H 1 и H 2 .

Иногда в качестве оператора Робертса берется величина
.

Оператор Собеля. Оператор Собеля применяют в алгоритмах выделения границ. Это дискретный дифференциальный оператор, вычисляющий приближенное значение градиента яркости изображения. Результатом применения оператора Собеля в каждой точке изображения является либо вектор градиента яркости в этой точке, либо его норма. Метод усиления края с помощью оператора Собеля рассматривает два различных ядра свертки:

Исходя из этих сверток вычисляется величина и направление краев. Свертка для каждого ядра вычисляется отдельно. В качестве отклика данного фильтра выступает величина

, (1.19)

где P и Q – отклик ядер H 1 и H 2 .

Иногда в качестве оператора Собеля берется величина
.

Оператор Превитта. Аналогично оператору Собеля действует оператор Превитта. Детектор границ Превитта является подходящим способом для оценки величины и ориентации границы. В то время как детектор с дифференциальным градиентом нуждается в трудоёмком вычислении оценки ориентации по величинам в вертикальном и горизонтальном направлениях, детектор границ Превитта даёт направление прямо из ядра с максимальным результатом. Метод усиления края с помощью оператора Превитта рассматривает два различных ядра свертки:

Результат работы оператора Превитта есть

, (1.21)

где P и Q – отклик ядер H 1 и H 2 .

Оператор Лапласа. Дискретный оператор Лапласа часто используется в обработке изображений, например в задаче выделения границ или в приложениях оценки движения. Дискретный лапласиан определяется как сумма вторых производных и вычисляется как сумма перепадов на соседях центрального пикселя. Метод усиления края по Лапласу рассматривает целый ряд различных ядер свертки. Приведем некоторые их них:

Как видно, сумма элементов матриц равна нулю, поэтому отклик фильтра может быть отрицательным. В этом случае значение отклика берется по модулю. В результате обработки области с постоянной или линейно возрастающей интенсивностью становятся черными, а области быстро изменяющихся значений интенсивности ярко высвечиваются.

Ниже приведем некоторые пространственные процессы, которые не подпадают под категорию свертки и могут применяться для устранения различного вида шума.

Фильтр «гармоническое среднее» . Гармоническое среднее ряда
вычисляется по формуле

. (1.23)

В процессе фильтрации значение текущего пикселя изображения заменяется на
множества значений девяти пикселей, включая текущий и соседние.

Min – фильтр. В процессе фильтрации значение текущего пикселя заменяется на минимальное значение соседних пикселей. Так, например, для ядра размерности 3 будем иметь:

Max – фильтр. В процессе фильтрации значение текущего пикселя заменяется на максимальное значение соседних пикселей (по аналогии с предыдущим фильтром).

Min - Max –фильтр. В процессе фильтрации значение текущего пикселя изображения сначала заменяется на минимальное значение соседних пикселей, а при повторном проходе на максимальное.

Медианный фильтр. Усредненное фильтрование использует значения элементов, содержащихся в области примыкания, для определения нового значения. Фильтр располагает элементы области примыкания в отсортированном порядке и отбирает среднее значение. Так, например, для ядра размерности 3 медианное значение будет пятым:

С помощью методов пространственной обработки изображений можно получить ряд интересных эффектов. Приведем некоторые из них.

Эффект тиснения. С помощью операции свертки можно реализовать преобразование, дающее эффект тиснения на изображении.

(1.24)

Бинарное «псевдополутоновое» изображение. Исходное изображение обрабатывается при помощи маски D2 или D4: если значение пикселя меньше пропорционального значения соответствующего ему элемента маски, то он обнуляется, иначе ему присваивается 255. Маска накладывается на изображение без перекрытия. Маски D2 и D4:

,

.

При использовании пространственных процессов могут возникнуть следующие вопросы, связанные с особенностями обработки пикселей:

    Устранение краевых эффектов;

    Значение отклика выходит за пределы .

Для первого вопроса возможны следующие пути решения:

    Исключить из преобразования граничные пиксели изображения

в этом случае выходное изображение будет иметь меньшие размеры, либо закрасить граничные пиксели, например черным цветом;

    Не включать соответствующий пиксель в суммирование, равномерно распределив его вес среди других пикселей окрестности;

    Дополнить (достроить) исходное изображение, добавив необходимое количество пикселей по границе. Количество достраиваемых строки столбцов, как правило, зависит от размера ядра. Здесь возможны два варианта:

    • Доопределить значения пикселей за границами изображения при помощи экстраполяции. Например, считать постоянным значение интенсивности вблизи границы или считать постоянным градиент интенсивности вблизи границы;

      Доопределить значения пикселей за границами изображения при помощи зеркального отражения.

Для решения проблем, связанных с выходом значения за пределы , возможны следующие действия:

    Масштабировать полученные значения при положительных откликах фильтра;

    При отрицательном отклике фильтра брать либо абсолютное значение (по модулю), либо приводить к нулю.

Также в данном разделе стоит привести возможную «классификацию» шума на изображении:

    Шум «соль и перец» – случайные белые и черные пиксели;

    Импульсный шум – случайные белые пиксели;

    Гауссов шум – колебания интенсивности, распределенные по нормальному закону.

В статье пойдет речь об использовании convolution matrix (матрицы скручивания или матрицы свертки), с помощью которой можно создавать и накладывать на изображения фильтры, такие как blur, sharpen и многие другие.

Cтатья будет интересна не только веб-программистам, но и всем кто так или иначе занимается программной обработкой изображений, поскольку функции для работы с матрицей скручивания имеются во многих языках (точно известно о php и flash). Так же, статья будет интересна дизайнерам, использующим Adobe Photoshop, поскольку в нем имеется соответствующий фильтр (Filter-Other-Custom).

Примеры будут на языке PHP с использованием библиотеки GD. Теория, практика, примеры (осторожно, много картинок!)

Теория

Говоря не математическим языком, convolution - это преобразование одной матрицы с помощью другой, которая называется ядром ("kernel"). При обработке изображений в качестве исходных выступают матрицы RGB-каналов пикселей в прямоугольных координатах.

В качестве ядра обычно используется матрица размером 3x3, но возможно и больше (5x5, 7x7 и т.д.). Ядро содержит степени влияния ("ценности") окружающих значений элемента на сам элемент.

Преобразования происходит следующим образом. Каждый элемент исходной матрицы умножается центральное значение матрицы ядра. Кроме этого на соответствующие значения умножаются окружающие его элементы (при размере ядра 3x3 их будет 8), после чего результаты суммируются и принимаются как преобразованное значение.

Вот простой графический пример:

Преобразуемое значение выделено красным, область действия матрицы ядра - зеленым.

Что получислось в результате преобразования. Ценности всех окружающих пикселей, включая собственное значение равно нулю, кроме верхнего среднего, где она равна единице. Таким образом, результат:

(40*0)+(42*1)+(46*0)+(46*0)+(50*0)+(55*0)+(52*0)+(56*0)+(58*0) = 42

Как видно, данное преобразование смещает изображение вниз на 1 пиксель.

Таким образом, convolution в данном случае - это преобразование изображения, в результате которого на каждый пиксель результата влияет окружающая его область. Степень влияния этой области задается с помощью "ядра" или матрицы скручивания.

Значения div и offset

При обработке изображений одним только преобразованием не отделаешься, нужна еще нормализация. Что делать, если получившееся значение больше 255 или меньше 0? Цветов-то таких нет. Более того, что выход за границы цвета явление достаточно частое.

Для нормализации результата используются дополнительные переменные: div (делитель) и offset (коэффициент). Они работают очень просто: результат преобразования делится на div и к нему прибавляется offset.

Не трудно догадаться, что по умолчанию div = 1, offset = 0 (div = 0 выставлять нельзя!).

При преобразованиях в качестве div обычно принимается сумма всех элементов матрицы скручивания. Это условие позволяет не допустить цветовых искажений, если они не нужны.

Действительно, если преобразуемая область содержит один и тот же цвет, то результат получится как сумма элементов ядра умноженное на этот цвет. Соответственно, что бы оставить цвет без изменений, надо разделить результат преобразования на эту самую сумму.

Простой пример: фильтр "негатив".

В качестве исходного мы возьмем следующее изображение:

на примере него можно будет увидеть, как изменяется крупный и мелкий текст, картинка и линии. Теперь создадим матрицу скручивания для получения эффекта негатива:

Согласно матрице, получается, что в результате преобразования все цвета будут иметь отрицательную величину. Чтобы цвета были негативными, нужно задать offset = 256, таким образом цвета всех пикселей вычитаются из 256, что является негативным изображением:

Как это делается на PHP

В библиотеке GD на PHP существует функция imageconvolution, которая содержит 4 параметра. Первый - это идентификатор изображения. Второй - это матрица в виде массива из 3-х массивов с 3-мя переменными. Третий и четвертый - это div и offset.

Вот код, который делает изображение негативным:

    $img = imagecreatefromjpeg ("images/pattern.jpg" ) ;

    $matrix = array (

    array ( 0 , 0 , 0 ) ,

    array ( 0 , - 1 , 0 ) ,

    array ( 0 , 0 , 0 )

    imageconvolution ($img , $matrix , 1 , 256 ) ;

    imagejpeg ($img , "images/pattern_negative.jpg" , 100 ) ;

Сразу стоит сказать об одной очень неприятной особенности GD: при преобразованиях с помощью imageconvolution "рушится" альфа-канал. Этот баг был описан уже давно, но насколько я знаю, его так и не исправили. Во flash этого нет, более того там имееются еще дополнительные параметры, которые отвечают за обработку краёв изображений, когда часть пикселей выпадает. В php края просто не обрабатываются.

Blur, sharpen, emboss

Вот стандартный набор матриц эффектов:

Обратите внимание, для blur коэффициент div = 9. Для такой матрицы только такой коэффициент не ведет к искажению цветов. Еще надо сказать, что вариантов blur-а несколько, они незначительно отличаются силой эффекта.

И вот какие получаются изображения:

Sharpen:

"Аккуратные" эффекты

Как видно из прошлого примера с blur, эффект накладывается на изображение, но достаточно сильно. А можно ли уменьшить силу эффекта на изображение? Оказывается, можно. Но для этого надо изменять не степень влияния окружающих пикселей, как можно показаться на первый взгляд, а количество влияющих пикселей:

Тогда получим эффекты, которые будут выглядеть намного аккуратнее:

Light-blur:

Light-sharpen:

Light-emboss:

Здесь стоит задаться вопросом, а как увеличивать силу эффекта? К сожалению, только многократным его наложением, поскольку как ни крути, а все равно обрабатывается область 3x3 пикселя. Естественно, это очень ресурсоемко, для получения размытия до пятен с помощью размытия по Гауссу иногда приходится накладывать фильтр 100-200 раз. Это занимает очень продолжительное время и очень много ресурсов.

В заключение

Хочу сказать, что вы сами можете создать какой-нибудь интересный эффект. Для этого достаточно поэкспериментировать с матрицей скручивания.

Матрица скручивания может быть успешна применена при:

  • создании "маленьких" картинок, напр. генерации аватаров и предпросмотров (особенно тут хорошо выглядит light-blur).
  • для создания "теней" (если бы еще с альфа-каналом:)
  • при создании CAPTHCA (текст + сильный Sharpen или Emboss)
  • и др. :-)

Создание симпатичной тени

    * Создает красивую тень

    * Внимание! Операция ресурсоемкая!

    * @param res $image - исходная картинка

    * @param int $shadow_width - толщина тени (1..10, выше не рекомендуется)

    * @param int $shadow_deep - глубина цвета тени (1..20, чем выше, тем чернее)

    * @param string $bg_color - цвет фона в формате #7def34

    function imageaddshadow (& $image , $shadow_width = 4 , $shadow_deep = 7 , $bg_color = false )

    $w = imagesx ($image ) ;

    $h = imagesy ($image ) ;

    $iw = $w + 4 * $shadow_width ;

    $ih = $h + 4 * $shadow_width ;

    $img = imagecreatetruecolor ($iw , $ih ) ;

    $shadow_deep = 255 - $shadow_deep * 12 ;

    $shadow = imagecolorallocate ($img , $shadow_deep , $shadow_deep , $shadow_deep ) ;

    if (! $bg_color ) {

    // Белый цвет по умолчанию

    $bg = imagecolorallocate ($img , 255 , 255 , 255 ) ;

    else {

    list ($r , $g , $b ) = array_map ("hexdec" , str_split (ltrim ($bg_color , "#" ) , 2 ) ) ;

    $bg = imagecolorallocate ($img , $r + 1 , $g + 1 , $b + 1 ) ;

    // Заливаем область цветом фона

    imagefilledrectangle ($img , 0 , 0 , $iw , $ih , $bg ) ;

    // Создаем тень

    imagefilledrectangle ($img ,

    1 + $shadow_width ,

    1 + $shadow_width ,

Значительную часть обработки изображений можно выполнить, не повторяя для каждого нового изображения статистический анализ, описанный в предыдущем разделе. Вполне достаточным оказывается ограниченный объем априорных сведений. Допустим, нам известна матрица совместной встречаемости для «идеального» изображения и требуется улучшить качество зашумленного варианта этого изображения. Если наибольшие элементы матрицы расположены на главной диагонали или вблизи нее, то это означает, что большая часть пикселов имеет тот же цвет, что и соседние пикселы. Если мы хотим выровнять гистограмму такого изображения, то, как показано в разд. 3.2, целесообразно воспользоваться правилом 3. Если требуется устранить шум, то замена значения каждого пиксела зашумленного изображения некоторой взвешенной суммой значений соседних пикселов приведет к уменьшению изменчивости значений смежных пикселов, и мы получим изображение, более близкое к оригиналу (см. пример 3.5). Таким образом мы приходим к соотношению, характеризующему связь исходного изображения и изображения подвергнутого фильтрации:

Процесс, реализующий эту операцию, называют линейным фильтром, в частности фильтром скользящего среднего, поскольку при его использовании значение каждого пиксела заменяется разновидностью среднего от значений соседних с ним элементов. Если весовая функция в пределах изображения не изменяется и не зависит от координат х, у, то уравнение (3.2) можно переписать в следующем виде:

Этот процесс называют пространственно-инвариантным фильтром. Эти фильтры широко применяются при обработке временных сигналов, однако целесообразность их использования в обработке изображений не очевидна. Уравнение (3.3) упрощается при записи его через фурье-преобразование. Можно показать (см. разд.

Результат применения такого фильтра состоит в подавлении одних частот и усилении других в зависимости от Н(и,

Пример 3.5. Если требуется очистить изображение от высокочастотного шума, то для осуществления такого сглаживания можно воспользоваться следующей разновидностью функции

Резучьтат применения фильтра можно оценить сравнив разности значении соседних пикселов до и после фильтрации В частности простейшие выкладки показывают что

Если обозначить через максимум абсолютной разности значений смежных пикселов исходного изображения и через соответствующую разность для пикселов изображения, прошедшего фильтрацию, то из уравнения (36) следует

т.е. очевидно, что эта разность расти не может Равенство имеет место только в случаях, когда максимальная разность значений пикселов в раз больше максимальной разности значений для пары пиксетов т.е. когда есть некоторая линейная функция от своих аргументов В противном случае указанная разность будет уменьшаться и области изображения будут принимать более однородный характер Поскольку обычно применение такого простейшего фильтра оказывается недостаточным для устранения шума приходится прибегать к использованию фильтра высшего порядка Одна из возможных реализаций такого фильтра заключается в вы боре простого фильтра и многократном применении его к изображению На рис 39 и 310 приведены результаты фильтрации на рис. 3.10 а представлено исходное изображение полученное из изображения, приведенного на рис 3 9, при помощи наложения на последнее гауссовского белого шума, на рис. 3.10 б представлены результаты восьмикратного применения фильтра заданного уравнением (3 5) Не трудно видеть что этот процесс приводит не только к удалению высокочастотного шума, но вызывает и размывание краев изображения

Рис. 3.9 (см. скан) Исходное изображение использованное для...

Действительно, если применить уравнение (3.6) к четко очерченному краю изображения

то оказывается, что

Другими словами, разность значений смежных пикселов уменьшилась вдвое и это, естественно привело к понижению контрастности изображения

Результаты применения данного фильтра можно также оценивать, рассматривая фурье-преобразование функции Введем обозначение

Воспользуемся уравнением (34)

Это выражение можно упростить, воспользовавшись тождеством

и выполнив затем простейшие тригонометрические преобразования, в результате выражение (3 8) принимает следующий вид

Лучшие статьи по теме