Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 7, XP
  • Чем отличаются режимы транзисторов. Характеристики биполярных транзисторов

Чем отличаются режимы транзисторов. Характеристики биполярных транзисторов

Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.

Введение

Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.

Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.

Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.

Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.

Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:

Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается H fe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.

Использование NPN транзистора как коммутатора

На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.

1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке V c . Мы найдем значение резистора базы, при котором всё будет правильно.

2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (V ce) взято из документации транзистора. Эмиттер подключен к GND, соответственно V ce = V c - 0 = V c . Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:

Иногда, сопротивления нагрузки R L неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.

3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:

Из неё следует что:

4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.

5. Расчёт необходимого значения R b: Учитывая перегрузку в 10 раз, сопротивление R b может быть рассчитано по следующей формуле:

где V 1 является напряжением управления транзистором (см. рис 2.а)

Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V 1 = 5V, формула может быть упрощена до следующего вида:

Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение R b известно, транзистор "настроен" на работу в качестве переключателя, что также называется "режим насыщения и отсечки ", где "насыщение" - когда транзистор полностью открыт и проводит ток, а "отсечение" – когда закрыт и ток не проводит.

Примечание: Когда мы говорим , мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.

Расчет нагрузки

Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:

H FE (β) меняется в зависимости от тока коллектора и напряжения V CEsat . Но V CEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.

Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е. наименьший H FE , крупнейший V CEsat и V CEsat .

Типичное применение транзисторного ключа

В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.

2. Подключение транзистора с открытым коллектором:

Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3.B

3. Создание логического элемента ИЛИ-НЕ (NOR):

Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.

На рисунке выше показан логический элемент ИЛИ-НЕ построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.

Поиск ошибок в транзисторных схемах

При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:

1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.

2. Измерение V CE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные V CE это быстрый способ обнаружения дефектных транзисторов.

3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.

PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.

Конструкция прибора

Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.

Стрелка определяет эмиттер и общепринятое направление его тока ("внутрь" для транзистора PNP).

PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.

Основные отличия двух типов биполярных транзисторов

Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.

Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.

Рассмотрим отличия PNP-типа на схеме включения с общей базой

Действительно, из нее можно увидеть, что ток коллектора I C (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.

По выводу базы, таким образом, проходит как ток коллектора I C , так и ток эмиттера I E . Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как I C немного меньше, чем I E . Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с I E , и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа - втекающий.

Отличия PNP-типа на примере схемы включения с общим эмиттером

В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.

Полный ток эмиттера задается суммой двух токов I C и I B ; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем I E = I C + I B .

В этой схеме ток базы I B просто «ответвляется» от тока эмиттера I E , также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток I B , а NPN-типа - втекающий.

В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.

PNP-транзистор: подключение источников напряжения

Источник напряжения между базой и эмиттером (V BE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.

Напряжение питания эмиттера также положительно по отношению к коллектору (V CE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.

Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.

На этот раз коллектор подключен к напряжению питания V CC через нагрузочный резистор, R L , который ограничивает максимальный ток, протекающий через прибор. Базовое напряжения V B , которое смещает ее в отрицательном направлении по отношению к эмиттеру, подано на нее через резистор R B , который снова используется для ограничения максимального тока базы.

Работа PNP-транзисторного каскада

Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.

Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: I C = I E - I B , так как ток должен вытекать из базы.

Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.

Характеристики транзистора

Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.

Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.

Транзисторные пары в усилительных каскадах

Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов - NPN и PNP - дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют "комплементарные", или "согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.

Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=I C /I B согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.

Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор - только его отрицательную половину.

Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.

Транзисторные пары в схемах управления электродвигателями

Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.

H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.

Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.

Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.

Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.

Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.

Определение типа транзисторов

Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.

Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:

1. Эмиттер - База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.

2. Коллектор - База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.

3. Эмиттер - Коллектор. Эти выводы не должен проводить в любом направлении.

Значения сопротивлений переходов транзисторов обоих типов

Тогда мы можем определить PNP-транзистор как исправный и закрытый. Небольшой выходной ток и отрицательное напряжение на его базе (B) по отношению к его эмиттеру (E) будет его открывать и позволит протекать значительно большему эмиттер-коллекторному току. Транзисторы PNP проводят при положительном потенциале эмиттера. Иными словами, биполярный PNP-транзистор будет проводить только в том случае, если выводы базы и коллектором являются отрицательным по отношению к эмиттеру.

Характеристики биполярных транзисторов

Статическим режимом работы транзистора называется такой режим, при котором отсутствует нагрузка в выходной цепи, а изменение входного тока или напряжения не вызывает изменение выходного напряжения Рис.7.

Статические характеристики транзисторов бывают двух видов: входные и выходные . На Рис.8. изображена схема установки для измерения статических характеристик транзистора, включённого по схеме с общим эмиттером.

Рис.8. Схема

измерений статических

параметров транзистора с ОЭ.

Входная статическая характеристика I Б от входного напряжения U БЭ при постоянном выходном напряжении U КЭ . Для схемы с общим эмиттером:

I Б = f (U БЭ) при U ЭК = const.

Поскольку ветви входной статической характеристики для U КЭ > 0 расположены очень близко друг к другу и практически сливаются в одну, то на практике с достаточной точностью можно пользоваться одной усреднённой характеристикой (Рис.9а ). Особенность входной статической характеристики является наличие в нижней части нелинейного участка в районе изгиба U 1 (приблизительно 0,2…0,3 В для германиевых транзисторов и 0,3…0,4 В – для кремниевых).

Выходная статическая характеристика – это зависимость выходного тока I К от выходного напряжения U КЭ при постоянном входном токе I Б . Для схемы включения с общим эмиттером:

I К = f (U КЭ) при I Б = const.

Из Рис.9б видно, что выходные характеристики представляют собой прямые линии, почти параллельные оси напряжения. Это объясняется тем, что коллекторный переход закрыт независимо от величины напряжения база-коллектор, и ток коллектора определяется только количеством носителей заряда, проходящих из эмиттера через базу в коллектор, т. е. током эмиттера I Э .

Динамическим режимом работы транзистора называется такой режим, при котором в выходной цепи стоит нагрузочный резистор R К , за счёт которого изменение входного тока или напряжения U ВХ будет вызывать изменение выходного напряжения U ВЫХ = U КЭ (Рис.10).


Рис.9. Статические характеристики транзистора с ОЭ: а – входные; б – выходные.

Входная динамическая характеристика – это зависимость входного тока I Б от входного напряжения U БЭ при наличии нагрузки. Для схемы с общим эмиттером:

I Б = f (U БЭ)

Поскольку в статическом режиме для U КЭ > 0 мы пользуемся одной усреднённой характеристикой, то входная динамическая характеристика совпадает со входной статической (Рис.11а ).

Рис.10. Схема включения транзистора в динамическом режиме с ОЭ.

Выходная динамическая (нагрузочная) характеристика представляет собой зависимость выходного напряжения U КЭ от выходного тока I К при фиксированных значениях входного тока I Б (Рис.11б ):

U КЭ = E К – I К R К

Так как это уравнение линейное, то выходная динамическая характеристика представляет собой прямую линию и строится на выходных статических характеристиках по двум точкам, например: А , В на Рис.11б .

Координаты точки А [U КЭ = 0; I K = Е К R К ] – на оси I K .

Координаты точки В [I K = 0; U КЭ = Е К ] – на оси U КЭ.

Координаты точки Р [U 0К; I 0 K ] – соответствуют положению рабочей точки РТ в режиме покоя (при отсутствии сигнала).

Рис.11. Динамические характеристики транзистора с ОЭ: а) – входная; б) – выходная.

Нагрузочная пряма проводится через любые две точки А, В, или Р, координаты которых известны.

В зависимости от состояния p-n переходов транзисторов различают несколько видов его работы – режим отсечки, режим насыщения, предельный и линейный режимы (Рис.11).

Режим отсечки. Это режим, при котором оба его перехода закрыты – транзистор заперт. Ток базы в этом случае равен нулю. Ток коллектора будет равен обратному току I К0 , а напряжение U КЭ = E К.

Режим насыщения – это режим, когда оба перехода – и эмиттерный и коллекторный открыты, а в транзисторе происходит свободный переход носителей зарядов. При этом ток базы будет максимальный, ток коллектора будет равен току коллектора насыщения, а напряжение между коллектором и эмиттером стремиться к нулю.

I Б = max; I К ≈ I КН; U КЭ = E К – I КН R Н; U КЭ → 0.

Предельные режимы – это режимы, работа в которых ограничена максимально-допустимыми параметрами: I К доп, U КЭ доп, P К доп (Рис.11б ) и I Б нас, U БЭ доп (Рис.11а ) и связана с перегревом транзистора или выхода его из строя.

Линейный режим – это режим, в котором обеспечивается достаточная линейность характеристик и он может использоваться для активного усиления.


Термин «биполярный транзистор» связан с тем, что в этих транзисторах используются носители зарядов двух типов: электроны и дырки. Для изготовления транзисторов применяют те же полупроводниковые материалы, что и для .

В биполярных транзисторах с помощью трехслойной полупроводниковой структуры из полупроводников создаются два p–n-перехода с чередующими типами электропроводности (p–n–p или n–p–n).

Биполярные транзисторы конструктивно могут быть беcкорпусными (рис.1,а) (для применения, например, в составе интегральных микросхем) и заключенными в типовой корпус (рис. 1,б). Три вывода биполярного транзистора называются база , коллектор и эмиттер .

Рис. 1. Биполярный транзистор: а) p–n–p-структуры без корпуса, б) n–p–n-структуры в корпусе

В зависимости от общего вывода можно получить три схемы подключения биполярного транзистора : с общей базой (ОБ), общим коллектором (ОК) и общим эмиттером (ОЭ). Рассмотрим работу транзистора в схеме с общей базой, (рис. 2).

Рис. 2. Схема работы биполярного транзистора

Эмиттер инжектирует (поставляет) в базу основные носители, в нашем примере для полупроводниковых приборов n-типа ими будут электроны. Источники выбирают так, чтобы E2 >> E1. Резистор Rэ ограничивает ток открытого p–n-перехода.

При E1 = 0 ток через коллекторный переход мал (обусловлен неосновными носителями), его называют начальным коллекторным током Iк0. Если E1 > 0, электроны преодолевают эмиттерный p–n-переход (E1 включена в прямом направлении) и попадают в область базы.

Базу выполняют с большим удельным сопротивлением (малой концентрацией примеси), поэтому концентрация дырок в базе низкая. Следовательно, немногие попавшие в базу электроны рекомбинируют с ее дырками, образуя базовый ток Iб. Одновременно в коллекторном p–n-переходе со стороны E2 действует много большее поле, чем в эмиттерном переходе, которое увлекает электроны в коллектор. Поэтому подавляющее большинство электронов достигают коллектора.

Эмиттерный и коллекторный токи связаны коэффициентом передачи тока эмиттера

при Uкб = const.

Всегда ∆ Iк ∆ Iэ, а a = 0,9 - 0,999 для современных транзисторов.

В рассмотренной схеме Iк = Iк0 + aIэ » Iэ. Следовательно, схема биполярного транзистора с общей базой обладает низким коэффициентом передачи тока. Из-за этого ее применяют редко, в основном в высокочастотных устройствах, где по усилению напряжения она предпочтительнее других.

Основной схемой включения биполярного транзистора является схема с общим эмиттером, (рис. 3).

Рис. 3. Включение биполярного транзистора по схеме с общим эмиттером

Для нее по можно записать Iб = Iэ – Iк = (1 – a)Iэ – Iк0 .

Учитывая, что 1 – a = 0,001 - 0,1, имеем Iб << Iэ » Iк.

Найдем отношение тока коллектора к току базы:

Это отношение называют коэффициентом передачи тока базы . При a = 0,99 получаем b = 100. Если в цепь базы включить источник сигнала, то такой же сигнал, но усиленный по току в b раз, будет протекать в цепи коллектора, образуя на резисторе Rк напряжение много большее, чем напряжение источника сигнала.

Для оценки работы биполярного транзистора в широком диапазоне импульсных и постоянных токов, мощностей и напряжений, а также для расчета цепи смещения, стабилизации режима используются семейства входных и выходных вольтамперных характеристик (ВАХ) .

Семейство входных ВАХ устанавливают зависимость входного тока (базы или эмиттера) от входного напряжения Uбэ при Uк = const, рис. 4,а. Входные ВАХ транзистора аналогичны ВАХ диода в прямом включении.

Семейство выходных ВАХ устанавливает зависимость тока коллектора от напряжения на нем при определенном токе базы или эмиттера (в зависимости от схемы с общим эмиттером или общей базой), рис. 4, б.

Рис. 4. Вольт-амперные характеристики биполярного транзистора: а – входные, б – выходные

Кроме электрического перехода n–p, в быстродействующих цепях широко используется переход на основе контакта металл–полупроводник – барьер Шоттки (Schottky). В таких переходах не затрачивается время на накопление и рассасывание зарядов в базе, и быстродействие транзистора зависит только от скорости перезарядки барьерной емкости.

Рис. 5. Биполярные транзисторы

Параметры биполярных транзисторов

Для оценки максимально допустимых режимов работы транзисторов используют основные параметры:

1) максимально допустимое напряжение коллектор–эмиттер (для различных транзисторов Uкэ макс = 10 - 2000 В),

2) максимально допустимая мощность рассеяния коллектора Pк макс – по ней транзисторы делят на транзисторы малой мощности (до 0,3 Вт), средней мощности (0,3 - 1,5 Вт) и большой мощности (более 1,5 Вт), транзисторы средней и большой мощности часто снабжаются специальным теплоотводящим устройством – радиатором,

3) максимально допустимый ток коллектора Iк макс – до 100 А и более,

4) граничная частота передачи тока fгр (частота, на которой h21 становится равным единице), по ней биполярные транзисторы делят:

  • на низкочастотные – до 3 МГц,
  • среднечастотные – от 3 до 30 МГц,
  • высокочастотные – от 30 до 300 МГц,
  • сверхвысокочастотные – более 300 МГц.

д.т.н., профессор Л. А. Потапов

Биполярные транзисторы изготавливаются из легированных материалов и могут быть двух типов – NPN и PNP. Транзистор имеет три вывода, известные как эмиттер (Э), база (Б) и коллектор (К). На рисунке, приведенном ниже, изображен NPN транзистор где, при основных режимах работы (активном, насыщении, отсечки) коллектор имеет положительный потенциал, эмиттер отрицательный, а база используется для управления состоянием транзистора.

Физика полупроводников в этой статье обсуждаться не будет, однако, стоит упомянуть, что биполярный транзистор состоит из трех отдельных частей, разделенных двумя p-n переходами. Транзистор PNP имеет одну N область, разделенную двумя P областями:

Транзистор NPN имеет одну P область, заключенную между двумя N областями:

Сочленения между N и P областями аналогичны переходам в , и они также могут быть с прямым и обратным смещением p-n перехода. Данные устройства могут работать в разных режимах в зависимости от типа смещения:

  • Отсечка: работа в этом режиме тоже происходит при переключении. Между эмиттером и коллектором ток не протекает, практически «обрыв цепи», то еесть «контакт разомкнут».
  • Активный режим: транзистор работает в схемах усилителей. В данном режиме его характеристика практически линейна. Между эмиттером и коллектором протекает ток, величина которого зависит от значения напряжения смещения (управления) между эмиттером и базой.
  • Насыщение: работает при переключении. Между эмиттером и коллектором происходит практически «короткое замыкание» , то есть «контакт замкнут».
  • Инверсный активный режим: как и в активном, ток транзистора пропорционален базовому току, но течет в обратном направлении. Используется очень редко.

В транзисторе NPN положительное напряжение подается на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подается на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течет от коллектора (К) к эмиттеру (Э):

А в PNP ток протекает от эмиттера к коллектору:

Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.

PNP и NPN работают почти одинаково, но их режимы отличаются из-за полярностей. Например, чтобы перевести NPN в режим насыщения, U Б должно быть выше, чем U К и U Э. Ниже приводится краткое описание режимов работы в зависимости от их напряжения:

Основным принципом работы любого биполярного транзистора является управление током базы для регулирования протекающего тока между эмиттером и коллектором. Принцип работы NPN и PNP транзисторов один и тот же. Единственное различие заключается в полярности напряжений, подаваемых на их N-P-N и P-N-P переходы, то есть на эмиттер-базу-коллектор.

Лучшие статьи по теме