Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Вконтакте
  • Частотные преобразователи. Частотное регулирование асинхронного двигателя

Частотные преобразователи. Частотное регулирование асинхронного двигателя

Регулируемый электропривод предназначен для управления двигателем путем контроля параметров. Скорость прямо пропорциональна частоте. Поэтому, варьируя частотой, можно поддерживать скорость вращения вала мотора, заданную согласно технологии. Пошаговое описание рабочего процесса для частотно-регулируемого привода (ЧРП) выглядит примерно так.

  1. Шаг первый. Преобразование диодным силовым выпрямителем одно- или трехфазного входного тока в постоянный.
  2. Шаг второй. Контроль преобразователем частоты за крутящим моментом и скоростью вращения вала электродвигателя.
  3. Шаг третий. Управление выходным напряжением, поддерживание постоянного соотношения U/f.

Устройство, выполняющее на выходе системы обратную функцию генерации постоянного тока в переменный, именуется инвертором. Избавление от пульсаций на шине достигается путем добавления дросселя и конденсатора фильтра.

Как выбрать частотно-регулируемый электропривод

Преобладающее число частотных преобразователей изготавливаются со встроенным фильтром электромагнитной совместимости (ЭМС).

Различаются такие виды управления, как , бездатчиковое и датчиковое векторное, и др. Согласно заданным приоритетам в принятии управленческих решений, приводы выбираются по:

  • типу нагрузки;
  • напряжению и номиналу двигателя;
  • режиму управления;
  • регулировки;
  • ЭМС и т. д.

Если ЧРП предназначен для асинхронного двигателя с большим сроком эксплуатации, то рекомендуется выбирать частотный преобразователь с завышенным током на выходе.С помощью современных преобразователей частоты возможно управление с пульта, по интерфейсу или комбинированным методом.

Технические особенности применения частотного электропривода

  1. Для обеспечения высокой производительности можно свободно переключаться на любой режим в настройках.
  2. Практически все устройства обладают диагностическими функциями, что позволяет быстро устранить возникшую неполадку. Однако рекомендуется в первую очередь проверить настройки, исключить вероятность непроизвольных действий работников.
  3. Регулируемыйприводможетсинхронизировать конвейерные процессы, либо задавать определённое соотношение взаимозависимых величин. Сокращение оборудования ведёт к оптимизации технологии.
  4. В состоянии автонастройки параметры двигателя автоматически заносятся в память преобразователя частоты. Благодаря чему повышается точность вычисления момента, и улучшается компенсация скольжения.

Область применения

Производителями предлагается широкий ассортимент приводов, используемых в областях, где задействованы электродвигатели. Идеальное решение для всех видов нагрузки, и вентиляторов. Системы среднего класса используются на угольных электростанциях, в горнодобывающей промышленности, на мельницах, в жилищно-коммунальном хозяйстве и т. д. Диапазон номиналов выглядит таким образом: 3 кВ, 3.3 кВ, 4.16 кВ, 6 кВ, 6.6 кВ, 10 кВ и 11 кВ.

С появлением регулируемого электропривода контроль давления воды у конечного потребителя не вызывает проблем. Интерфейс с продуманной структурой сценариев отлично подходит для управления насосным оборудованием. Благодаря компактной конструкции, привод может быть установлен в шкаф различного исполнения. Продукты нового поколения обладают свойствами передовой техники:

  • высокая скорость и точность управления в векторном режиме;
  • существенная экономия электроэнергии;
  • быстрые динамические характеристики;
  • большой низкочастотный вращающий момент;
  • двойное торможение и т. д.

Назначение и технические показатели

Комплектные ЧРП напряжением до и выше 1 кВ (предназначенные для приема и преобразования энергии, защиты электрооборудования от токов КЗ, перегрузки) позволяют:

  • плавно запускать двигатель, а, следовательно, уменьшать его износ;
  • останавливать, поддерживать частоту вращения вала двигателя.

Комплектные ЧРП шкафного исполнения до 1кВ выполняют те же задачи по отношению к двигателям с мощностью 0,55 – 800 кВт. Привод нормально работает, когда напряжение в электросети находится в пределах от -15% до +10%. При безостановочной работе снижение мощности наступает, если напряжение составляет 85%-65%. Общий коэффициент мощности cosj = 0,99. Выходное напряжение автоматически регулируется посредством автоматического включение резерва (АВР).

Преимущества использования

С точки зрения оптимизации и потенциальные преимущества предоставляют возможность:

  • регулировать процесс с высокой точностью;
  • удалённо диагностировать привод;
  • учитывать моточасы;
  • следить за неисправностью и старением механизмов;
  • повышать ресурс машин;
  • значительно снижать акустический шум электродвигателя.

Заключение

Что такое ЧРП? Это мотор-контроллер, который управляет электродвигателем за счет регулировки частоты входной сети, и одновременно защищает агрегат от различных неисправностей (токовой перегрузки, токов КЗ).

Электрические приводы (выполняющие три функции, связанные со скоростью, управлением и торможением) являются незаменимым устройством для работы электродвигателей и других вращающихся машин. Системы активно применяются во многих сферах производства: в нефтегазовой отрасли, атомной энергетике, деревообработке и др.

Производим и продаем частотные преобразователи:
Цены на преобразователи частоты(21.01.16г.):
Частотники одна фаза в три:
Модель Мощность Цена
CFM110 0.25кВт 2300грн
CFM110 0.37кВт 2400грн
CFM110 0.55кВт 2500грн
CFM210 1,0 кВт 3200грн
CFM210 1,5 кВт 3400грн
CFM210 2,2 кВт 4000грн
CFM210 3,3 кВт 4300грн
AFM210 7,5 кВт 9900грн (единственный на рынке частотник 220 в 380 мощностью 7,5кВт)

Частотники 380В три фазы в три:
CFM310 4.0 кВт 6800грн
CFM310 5.5 кВт 7500грн
CFM310 7.5 кВт 8500грн
Контакты для заказов частотных преобразователей:
+38 050 4571330
chastotnik@сайт

Современный частотно регулируемый электропривод состоит из асинхронного или синхронного электрического двигателя и преобразователя частоты (см. рис.1.).

Электрический двигатель преобразует электрическую энергию в

механическую энергию и приводит в движение исполнительный орган технологического механизма.

Преобразователь частоты управляет электрическим двигателем и представляет собой электронное статическое устройство. На выходе преобразователя формируется электрическое напряжение с переменными амплитудой и частотой.

Название «частотно регулируемый электропривод» обусловлено тем, что регулирование скорости вращения двигателя осуществляется изменением частоты напряжения питания, подаваемого на двигатель от преобразователя частоты.

На протяжении последних 10 -15 лет в мире наблюдается широкое и успешное внедрение частотно регулируемого электропривода для решения различных технологических задач во многие отрасли экономики. Это объясняется в первую очередь разработкой и созданием преобразователей частоты на принципиально новой элементной базе, главным образом на биполярных транзисторах с изолированным затвором IGBT.

В настоящей статье коротко описаны известные сегодня типы преобразователей частоты, применяемые в частотно регулируемом электроприводе, реализованные в них методы управления, их особенности и характеристики.

При дальнейших рассуждениях будем говорить о трехфазном частотно регулируемом электроприводе, так как он имеет наибольшее промышленное применение.

О методах управления

В синхронном электрическом двигателе частота вращения ротора в

установившемся режиме равна частоте вращения магнитного поля статора.

В асинхронном электрическом двигателе частота вращения ротора

установившемся режиме отличается от частоты вращения на величину скольжения.

Частота вращения магнитного поля зависит от частоты напряжения питания.

При питании обмотки статора электрического двигателя трехфазным напряжением с частотой создается вращающееся магнитное поле. Скорость вращения этого поля определяется по известной формуле

где - число пар полюсов статора.

Переход от скорости вращения поля, измеряемой в радианах, к частоте вращения, выраженной в оборотах в минуту, осуществляется по следующей формуле

где 60 - коэффициент пересчета размерности.

Подставив в это уравнение скорость вращения поля, получим, что

Таким образом, частота вращения ротора синхронного и асинхронного двигателей зависит от частоты напряжения питания.

На этой зависимости и основан метод частотного регулирования.

Изменяя с помощью преобразователя частоту на входе двигателя, мы регулируем частоту вращения ротора.

В наиболее распространенном частотно регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное частотное управление.

При скалярном управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, к. п.д., коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения.

В существующих преобразователях частоты при скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя к моменту сопротивления на валу. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя.

При постоянстве перегрузочной способности номинальные коэффициент мощности и к. п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.

Максимальный момент, развиваемый двигателем, определяется следующей зависимостью

где - постоянный коэффициент.

Поэтому зависимость напряжения питания от частоты определяется характером нагрузки на валу электрического двигателя.

Для постоянного момента нагрузки поддерживается отношение U/f = const, и, по сути, обеспечивается постоянство максимального момента двигателя. Характер зависимости напряжения питания от частоты для случая с постоянным моментом нагрузки изображен на рис. 2. Угол наклона прямой на графике зависит от величин момента сопротивления и максимального крутящего момента двигателя.

Вместе с тем на малых частотах, начиная с некоторого значения частоты, максимальный момент двигателя начинает падать. Для компенсации этого и для увеличения пускового момента используется повышение уровня напряжения питания.

В случае вентиляторной нагрузки реализуется зависимость U/f2 = const. Характер зависимости напряжения питания от частоты для этого случая показан на рис.3. При регулировании в области малых частот максимальный момент также уменьшается, но для данного типа нагрузки это некритично.

Используя зависимость максимального крутящего момента от напряжения и частоты, можно построить график U от f для любого типа нагрузки.

Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей.

Скалярное управление достаточно для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.

Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом

необходимо изменять кроме амплитуды и фазу статорного тока, то есть вектор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по другим параметрам двигателя. В качестве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты.

Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно регулируемого электропривода без обратной связи по скорости невозможна.

Векторное управление с датчиком обратной связи скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости - сотые доли процента, точность по моменту - единицы процентов.

В синхронном частотно регулируемом приводе применяются те же методы управления, что и в асинхронном.

Однако в чистом виде частотное регулирование частоты вращения синхронных двигателей применяется только при малых мощностях, когда нагрузочные моменты невелики, и мала инерция приводного механизма. При больших мощностях этим условиям полностью отвечает лишь привод с вентиляторной нагрузкой. В случаях с другими типами нагрузки двигатель может выпасть из синхронизма.

Для синхронных электроприводов большой мощности применяется метод частотного управления с самосинхронизацией, который исключает выпадение двигателя из синхронизма. Особенность метода состоит в том, что управление преобразователем частоты осуществляется в строгом соответствии с положением ротора двигателя.

Преобразователь частоты - это устройство, предназначенное для преобразования переменного тока (напряжения) одной частоты в переменный ток (напряжение) другой частоты.

Выходная частота в современных преобразователях может изменяться в широком диапазоне и быть как выше, так и ниже частоты питающей сети.

Схема любого преобразователя частоты состоит из силовой и управляющей частей. Силовая часть преобразователей обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми
электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

Преобразователи частоты,

применяемые в регулируемом

электроприводе, в зависимости от структуры и принципа работы силовой разделяются на два класса:

1. Преобразователи частоты с явно выраженным промежуточным звеном постоянного тока.

2. Преобразователи частоты с непосредственной связью (без промежуточного звена постоянного тока).

Каждый из существующих классов преобразователей имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

Исторически первыми появились преобразователи с непосредственной связью

(рис. 4.), в которых силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристотров и подключает статорные обмотки двигателя к питающей сети.

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. На рис.5. показан пример формирования выходного напряжения для одной из фаз нагрузки. На входе преобразователя действует трехфазное синусоидальное напряжение иа, ив, ис. Выходное напряжение ивь1х имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Из рисунка видно, что частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1: 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

Использование не запираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя.

«Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к. п.д. системы в целом.

Наряду с перечисленными недостатками преобразователей с непосредственной связью, они имеют определенные достоинства. К ним относятся:

Практически самый высокий КПД относительно других преобразователей (98,5% и выше),

Способность работать с большими напряжениями и токами, что делает возможным их использование в мощных высоковольтных приводах,

Относительная дешевизна, несмотря на увеличение абсолютной стоимости за счет схем управления и дополнительного оборудования.

Подобные схемы преобразователей используются в старых приводах и новые конструкции их практически не разрабатываются.

Наиболее широкое применение в современных частотно регулируемых приводах находят преобразователи с явно выраженным звеном постоянного тока (рис. 6.).

В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (В), фильтруется фильтром (Ф), сглаживается, а затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению к. п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока.

В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия.

Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах (95 - 98%).

Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением 3 - 10 кВ и выше. Однако их цена на один кВт выходной мощности самая большая в классе высоковольтных преобразователей.

До недавнего прошлого преобразователи частоты на GTO составляли основную долю и в низковольтном частотно регулируемом приводе. Но с появлением IGBT транзисторов произошел «естественный отбор» и сегодня преобразователи на их базе общепризнанные лидеры в области низковольтного частотно регулируемого привода.

Тиристор является полууправляемым приборам: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для
этого в тиристорном преобразователе частоты требуется сложная и громоздкая система управления.

Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость, простая неэнергоемкая система управления, самая высокая рабочая частота

Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.

Для асинхронного электропривода с векторным управлением преобразователи на IGBT позволяют работать на низких скоростях без датчика обратной связи.

Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорной системой управления в преобразователях частоты снижает уровень высших гармоник, характерных для тиристорных преобразователей. Как следствие меньшие добавочные потери в обмотках и магнитопроводе электродвигателя, уменьшение нагрева электрической машины, снижение пульсаций момента и исключение так называемого «шагания» ротора в области малых частот. Снижаются потери в трансформаторах, конденсаторных батареях, увеличивается их срок службы и изоляции проводов, уменьшаются количество ложных срабатываний устройств защиты и погрешности индукционных измерительных приборов.

Преобразователи на транзисторах IGBT по сравнению с тиристорными преобразователями при одинаковой выходной мощности отличаются меньшими габаритами, массой, повышенной надежностью в силу модульного исполнения электронных ключей, лучшего теплоотвода с поверхности модуля и меньшего количества конструктивных элементов.

Они позволяют реализовать более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность отказов и повреждений электропривода.

На настоящий момент низковольтные преобразователи на IGBT имеют более высокую цену на единицу выходной мощности, вследствие относительной сложности производства транзисторных модулей. Однако по соотношению цена/качество, исходя из перечисленных достоинств, они явно выигрывают у тиристорных преобразователей, кроме того, на протяжении последних лет наблюдается неуклонное снижение цен на IGBT модули.

Главным препятствием на пути их использования в высоковольтном приводе с прямым преобразованием частоты и при мощностях выше 1 - 2 МВт на настоящий момент являются технологические ограничения. Увеличение коммутируемого напряжения и рабочего тока приводит к увеличению размеров транзисторного модуля, а также требует более эффективного отвода тепла от кремниевого кристалла.

Новые технологии производства биполярных транзисторов направлены на преодоление этих ограничений, и перспективность применения IGBT очень высока также и в высоковольтном приводе. В настоящее время IGBT транзисторы применяются в высоковольтных преобразователях в виде последовательно соединенных нескольких

Структура и принцип работы низковольтного преобразователя частоты на GBT транзисторах

Типовая схема низковольтного преобразователя частоты представлена на рис. 7. В нижней части рисунка изображены графики напряжений и токов на выходе каждого элемента преобразователя.

Переменное напряжение питающей сети (ивх.) с постоянной амплитудой и частотой (UEx = const, f^ = const) поступает на управляемый или неуправляемый выпрямитель (1).

Для сглаживания пульсаций выпрямленного напряжения (ивыпр.) используется фильтр (2). Выпрямитель и емкостный фильтр (2) образуют звено постоянного тока.

С выхода фильтра постоянное напряжение ud поступает на вход автономного импульсного инвертора (3).

Автономный инвертор современных низковольтных преобразователей, как было отмечено, выполняется на основе силовых биполярных транзисторов с изолированным затвором IGBT. На рассматриваемом рисунке изображена схема преобразователя частоты с автономным инвертором напряжения как получившая наибольшее распространение.

ЗВЕ МО ПС хт<)A\U IQTOTOKAj

В инверторе осуществляется преобразование постоянного напряжения ud в трехфазное (или однофазное) импульсное напряжение ии изменяемой амплитуды и частоты. По сигналам системы управления каждая обмотка электрического двигателя подсоединяется через соответствующие силовые транзисторы инвертора к положительному и отрицательному полюсам звена постоянного тока.

Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя. Амплитуда и частота напряжения определяются параметрами модулирующей синусоидальной функции.

При высокой несущей частоте ШИМ (2 ... 15 кГц) обмотки двигателя вследствие их высокой индуктивности работают как фильтр. Поэтому в них протекают практически синусоидальные токи.

В схемах преобразователей с управляемым выпрямителем (1) изменение амплитуды напряжения uH может достигаться регулированием величины постоянного напряжения ud, а изменение частоты - режимом работы инвертора.

При необходимости на выходе автономного инвертора устанавливается фильтр (4) для сглаживания пульсаций тока. (В схемах преобразователей на IGBT в силу низкого уровня высших гармоник в выходном напряжении потребность в фильтре практически отсутствует.)

Таким образом, на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (ивых = var, ^ых = var).

В последние годы многие фирмы большое внимание, которое диктуется потребностями рынка, уделяют разработке и созданию высоковольтных частотных преобразователей. Требуемая величина выходного напряжения преобразователя частоты для высоковольтного электропривода достигает 10 кВ и выше при мощности до нескольких десятков мегаватт.

Для таких напряжений и мощностей при прямом преобразовании частоты применяются весьма дорогие тиристорные силовые электронные ключи со сложными схемами управления. Подключение преобразователя к сети осуществляется либо через входной токоограничивающий реактор, либо через согласующий трансформатор.

Предельные напряжение и ток единичного электронного ключа ограничены, поэтому применяют специальные схемные решения для повышения выходного напряжения преобразователя. Кроме того, это позволяет уменьшить общую стоимость высоковольтных преобразователей частоты за счет использования низковольтных электронных ключей.

В преобразователях частоты различных фирм производителей используются следующие схемные решения.

В схеме преобразователя (рис. 8.) осуществляется двойная трансформация напряжения с помощью понижающего (Т1) и повышающего (Т2) высоковольтных трансформаторов.

Двойная трансформация позволяет использовать для регулирования частоты Рис 9. относительно дешевый

низковольтный преобразователь частоты, структура которого представлена на рис. 7.

Преобразователи отличают относительная дешевизна и простота практической реализации. Вследствие этого они наиболее часто применяются для управления высоковольтными электродвигателями в диапазоне мощностей до 1 - 1,5 МВт. При большей мощности электропривода трансформатор Т2 вносит существенные искажения в процесс управления электродвигателем. Основными недостатками двухтрансформаторных преобразователей являются высокие массогабаритные характеристики, меньшие по отношению к другим схемам КПД (93 - 96%) и надежность.

Преобразователи, выполненные по этой схеме, имеют ограниченный диапазон регулирования частоты вращения двигателя как сверху, так и снизу от номинальной частоты.

При снижении частоты на выходе преобразователя увеличивается насыщение сердечника и нарушается расчетный режим работы выходного трансформатора Т2. Поэтому, как показывает практика, диапазон регулирования ограничен в пределах Пном>П>0,5Пном. Для расширения диапазона регулирования используют трансформаторы с увеличенным сечением магнитопровода, но это увеличивает стоимость, массу и габариты.

При увеличении выходной частоты растут потери в сердечнике трансформатора Т2 на перемагничивание и вихревые токи.

В приводах мощностью более 1 МВт и напряжении низковольтной части 0,4 - 0,6 кВ сечение кабеля между преобразователем частоты и низковольтной обмоткой трансформаторов должно быть рассчитано на токи до килоампер, что увеличивает массу преобразователя.

Для повышения рабочего напряжения преобразователя частоты электронные ключи соединяют последовательно (см. рис.9.).

Число элементов в каждом плече определяется величиной рабочего напряжения и типом элемента.

Основная проблема для этой схемы состоит в строгом согласовании работы электронных ключей.

Полупроводниковые элементы, изготовленные даже в одной партии, имеют разброс параметров, поэтому очень остро стоит задача согласования их работы по времени. Если один из элементов откроется с задержкой или закроется раньше остальных, то к нему будет приложено полное напряжение плеча, и он выйдет из строя.

Для снижения уровня высших гармоник и улучшения электромагнитной совместимости используют многопульсные схемы преобразователей. Согласование преобразователя с питающей сетью осуществляется с помощью многообмоточных согласующих трансформаторов Т.

На рис.9. изображена 6-ти пульсная схема с двухобмоточным согласующим трансформатором. На практике существуют 12-ти, 18-ти, 24-х пульсные схемы

преобразователей. Число вторичных обмоток трансформаторов в этих схемах равно 2, 3, 4 соответственно.

Схема является наиболее распространенной для высоковольтных преобразователей большой мощности. Преобразователи имеют одни из лучших удельные массогабаритные показатели, диапазон изменения выходной частоты от 0 до 250-300 Гц, КПД преобразователей достигает 97,5%.

3. Схема преобразователя с многообмоточным трансформатором

Силовая схема преобразователя (рис.10.) состоит из многообмоточного трансформатора и электронных инверторных ячеек. Количество вторичных обмоток трансформаторов в известных схемах достигает 18. Вторичные обмотки электрически сдвинуты относительно друг друга.

Это позволяет использовать низковольтные инверторные ячейки. Ячейка выполняется по схеме: неуправляемый трехфазный выпрямитель, емкостной фильтр, однофазный инвертор на IGBT транзисторах.

Выходы ячеек соединяются последовательно. В приведенном примере каждая фаза питания электродвигателя содержит три ячейки.

По своим характеристикам преобразователи находятся ближе к схеме с последовательным включением электронных ключей.

Содержание:

В асинхронных электрических двигателях возникает необходимость регулировки частоты вращения ротора. С этой целью используется частотно-регулируемый привод, основным элементом которого является частотный преобразователь. В его конструкцию входит мост постоянного тока, он же - выпрямитель, преобразующий промышленный переменный ток в постоянный. Другая важная деталь - инвертор, выполняющий обратное преобразование постоянного тока в переменный с необходимой частотой и амплитудой.

Принцип работы частотно регулируемого привода

Асинхронные двигатели широко применяются в промышленности и на транспорте, являясь основной движущей силой узлов, машин и механизмов. Они отличаются высокой надежностью и сравнительно легко поддаются ремонту.

Однако данные устройства могут вращаться только на одной частоте, которую имеет питающая сеть переменного тока. Для работы в различных диапазонах используются специальные устройства - частотные преобразователи, выполняющие регулировку частот до требуемых параметров.

Работа преобразователей тесно связана с принципом действия асинхронного двигателя. Его статор состоит из трех обмоток к каждой из которых подведен электрический ток, создающий переменное магнитное поле. Под действием этого поля в роторе индуцируется ток, который также приводит к возникновению магнитного поля. В результате взаимодействия полей статора и ротора, начинается вращение ротора.

Когда асинхронный двигатель запускается, происходит значительное потребление тока от питающей сети. Из-за этого привод механизма испытывает значительную перегрузку. Наблюдается скачкообразное стремление двигателя достичь номинальных оборотов. В результате, снижается срок службы не только самого агрегата, но и тех устройств, которые он приводит в действие.

Данная проблема успешно решается путем использования частотно регулируемого привода, позволяющего изменять частоту напряжения, питающего двигатель. Применение современных электронных компонентов делает эти устройства малогабаритными и высокоэффективными.

Принцип работы частотного преобразователя достаточно простой. Вначале осуществляется подача сетевого напряжения к выпрямителю, где происходит его трансформация в постоянный ток. Затем он сглаживается конденсаторами и поступает на транзисторный преобразователь. Его транзисторы в открытом состоянии обладают крайне малым сопротивлением. Их открытие и закрытие происходит в определенное время при помощи электронного управления. Происходит формирование напряжения, аналогичного трехфазному, когда фазы смещаются относительно друг друга. Импульсы имеют прямоугольную форму, однако это совершенно не влияет на работу двигателя.

Частотные преобразователи имеют большое значение при работе . При такой схеме подключения необходимо использование фазосдвигающего конденсатора для создания вращающего момента. Эффективность агрегата заметно падает, однако частотный преобразователь увеличить его производительность.

Таким образом, применение частотно регулируемого электропривода делает управление трехфазными двигателями переменного тока более эффективным. В результате, улучшаются производственные технологические процессы, а энергоресурсы используются более рационально.

Преимущества и недостатки устройств регулировки частоты

Данные регулировочные устройства обладают несомненными достоинствами и дают высокий экономический эффект. Они отличаются высокой точностью регулировок, обеспечивают пусковой момент равный максимальному. При необходимости электродвигатель может работать с неполной нагрузкой, что позволяет существенно экономить электроэнергию. Регулировщики частоты заметно продлевают срок эксплуатации оборудования. При плавном пуске двигателя, его износ становится намного меньше.

Частотно регулируемый привод поддается удаленной диагностике по промышленной сети. Это позволяет вести учет отработанных моточасов, распознавать выпадающие фазы во входных и выходных цепях, а также выявлять другие дефекты и неисправности.

К регулировочному устройству могут подключаться различные датчики, которые дают возможность настройки каких-либо величин, например, давления. Если сетевое напряжение неожиданно пропало, включается система управляемого торможения и автоматического перезапуска. Скорость вращения стабилизируется при изменяющейся нагрузке. Частотно регулируемый привод становится альтернативной заменой автоматического выключателя.

В качестве основного недостатка следует отметить создание помех большинством моделей таких устройств. Для обеспечения нормальной работы необходимо устанавливать фильтры высокочастотных помех. Кроме того, повышенная мощность частотно регулируемых приводов значительно поднимает их стоимость, поэтому минимальный срок окупаемости составляет 1-2 года.

Применение регулировочных устройств

Частотно регулировочные устройства применяются во многих сферах - в промышленности и в быту. Ими оборудуются прокатные станы, конвейеры, резательные автоматы, вентиляторы, компрессоры, мешалки, бытовые стиральные машины и кондиционеры. Приводы хорошо зарекомендовали себя в городском троллейбусном транспорте. Использование частотно регулируемых приводов в станках с числовым программным управлением позволяет синхронизировать движения сразу в направлении многих осей.

Максимальный экономический эффект эти системы дают при их использовании в различном насосном оборудовании. Стандартное любых типов заключается в регулировке дросселей, устанавливаемых в напорных линиях и определении числа действующих агрегатов. За счет этого удается получить определенные технические параметры, такие как давление в трубопроводе и другие.

Насосы имеют постоянную частоту вращения и не учитывают изменяющийся расход в результате переменного водопотребления. Даже в случае минимального расхода насосы будут поддерживать постоянную частоту вращения, приводя к созданию избыточного давления в сети и вызывая аварийные ситуации. Все это сопровождается значительным бесполезным расходом электроэнергии. В основном это происходит в ночное время при резком падении водопотребления.

С появлением частотно регулируемого привода появилась возможность поддержки постоянного давления непосредственно у потребителей. Данные системы хорошо зарекомендовали себя в совокупности с асинхронными двигателями общего назначения. Регулировка частоты позволяет изменять скорость вращения вала, делая ее более высокой или низкой по сравнению с номинальной. Датчик давления, установленный у потребителя, передает информацию на частотно регулируемый привод, который, в свою очередь, изменяет частоту, поступающую к двигателю.

Современные регулирующие устройства отличаются компактными размерами. Они размещаются в корпусе, защищенном от пыли и влаги. Благодаря удобному интерфейсу, приборы могут эксплуатироваться даже в наиболее сложных условиях, при широком диапазоне мощности - от 0,18 до 630 киловатт и напряжении 220/380 вольт.

Преобразователи частоты

С конца 1960-х годов преобразователи частоты изменились коренным образом, в основном, как результат разработки микропроцессорных и полупроводниковых технологий, а также благодаря снижению их стоимости.

Однако основополагающие принципы, заложенные в преобразователях частоты, остались прежними.

В состав преобразователей частоты входят четыре основных элемента:

Рис. 1. Блок-схема преобразователя частоты

1.Выпрямитель формирует пульсирующее напряжение постоянного тока при его подключении к одно/трехфазной питающей электросети переменного тока. Выпрямители бывают двух основных типов - управляемые и неуправляемые.

2.Промежуточная цепь одного из трех типов:

a) преобразующая напряжение выпрямителя в постоянный ток.

b) стабилизирующая или сглаживающая пульсирующее напряжение постоянного тока и подающая его на инвертор.

c) преобразующая неизменное напряжение постоянного тока выпрямителя в изменяющееся напряжение переменного тока.

3.Инвертор, который формирует частоту напряжения электродвигателя. Некоторые инверторы могут также конвертировать неизменное напряжение постоянного тока в изменяющееся напряжение переменного тока.

4. Электронная схема управления, которая посылает сигналы в выпрямитель, промежуточную цепь и инвертор и получает сигналы от данных элементов. Построение управляемых элементов зависит от конструкции конкретного преобразователя частоты (см. рис. 2.02).

Общим для всех преобразователей частоты является то, что все цепи управления управляют полупроводниковыми элементами инвертера. Преобразователи частоты различаются по режиму коммутации, используемому для регулирования напряжения питания электродвигателя.

На рис. 2, где показаны различные принципы построения/управления преобразователя, используются следующие обозначения:

1- управляемый выпрямитель,

2- неуправляемый выпрямитель,

3- промежуточная цепь изменяющегося постоянного тока,

4- промежуточная цепь неизменного напряжения постоянного тока

5- промежуточная цепь изменяющегося постоянного тока,

6- инвертор с амплитудно-импульсной модуляцией (АИМ)

7- инвертор с широтно-импульсной модуляцией (ШИМ)

Инвертор тока (ИТ) (1+3+6)

Преобразователь с амплитудно-импульсной модуляцией (АИМ) (1+4+7) (2+5+7)

Преобразователь с широтно-импульсной модуляцией (ШИМ/VVCplus) (2+4+7)

Рис. 2. Различные принципы построения/управления преобразователей частоты

Для полноты следует упомянуть прямые преобразователи, которые не имеют промежуточной цепи. Такие преобразователи используются в мегаваттном диапазоне мощности для формирования низкочастотного питающего напряжения непосредственно из сети частотой 50 Гц, при этом их максимальная выходная частота составляет около 30 Гц. 

Выпрямитель

Питающее напряжение сети является трехфазным или однофазным напряжением переменного тока с фиксированной частотой (например, 3x400 В/50 Гц или 1 х240 В/50 Гц); характеристики этих напряжений иллюстрируются приведенным ниже рисунком.

Рис. 3. Однофазное и трехфазное напряжение переменного тока

На рисунке все три фазы смещены между собой по времени, фазное напряжение постоянно изменяет направление, а частота указывает число периодов в секунду. Частота 50 Гц означает, что на секунду приходится 50 периодов (50 х Т), т.е. один период длится 20 миллисекунд.

Выпрямитель преобразователя частоты строится либо на диодах, либо на тиристорах, либо на их комбинации. Выпрямитель, построенный на диодах, является неуправляемым, а на тиристорах - управляемым. Если используются и диоды, и тиристоры, выпрямитель является полууправляемым.

Неуправляемые выпрямители

Рис. 4. Режим работы диода.

Диоды позволяют току протекать только в одном направлении: от анода (А) к катоду (К). Как и в случае некоторых других полупроводниковых приборов, величину тока диода регулировать невозможно. Напряжение переменного тока преобразуется диодом в пульсирующее напряжение постоянного тока. Если неуправляемый трехфазный выпрямитель питается трехфазным напряжением переменного тока, то и в этом случае напряжение постоянного тока будет пульсировать.

Рис. 5. Неуправляемый выпрямитель

На рис. 5 показан неуправляемый трехфазный выпрямитель, содержащий две группы диодов. Одна группа состоит из диодов D1, D3 и D5. Другая группа состоит из диодов D2, D4 и D6. Каждый диод проводит ток в течение трети времени периода (120°). В обеих группах диоды проводят ток в определенной последовательности. Периоды, в течение которых обе группы работают, смещены между собой на 1 /6 времени периода Т (60°).

Диоды D1,3,5 открыты (проводят), когда к ним приложено положительное напряжение. Если напряжение фазы L достигает положи-тельного пикового значения, то диод D, открыт и клемма А получает напряжение фазы L1 На два других диода будут действовать обратные напряжения величиной U L1-2 и U L1-3

То же происходит и в группе диодов D2,4,6. В этом случае клемма В получает отрицательное фазное напряжение. Если в данный момент фаза L3 достигает предельного отрицательного значения, диод D6 открыт (проводит). На оба других диода действуют обратные напряжения величиной U L3-1 и U L3-2

Выходное напряжение неуправляемого выпрямителя равно разности напряжений этих двух диодных групп. Среднее значение пульсирующего напряжения постоянного тока равно 1,35 х напряжение сети.

Рис. 6. Выходное напряжение неуправляемого трехфазного выпрямителя

Управляемые выпрямители

В управляемых выпрямителях диоды заменены тиристорами. Подобно диоду тиристор пропускает ток только в одном направлении - от анода (А) к катоду (К). Однако в противоположность диоду тиристор имеет третий электрод, называемый «затвором» (G). Чтобы тиристор открылся, на затвор должен быть подан сигнал. Если через тиристор течет ток, тиристор будет пропускать его до тех пор, пока ток не станет равным нулю.

Ток не может быть прерван подачей сигнала на затвор. Тиристоры используются как в выпрямителях, так и в инверторах.

На затвор тиристора подается управляющий сигнал а, который характеризуется задержкой, выражаемой в градусах. Эти градусы оказывают запаздывание между моментом перехода напряжения через нуль и временем, когда тиристор открыт.

Рис. 7. Режим работы тиристора

Если угол а находится в пределах от 0° до 90°, то тиристорная схема используется в качестве выпрямителя, а если в пределах от 90° до 300° - то в качестве инвертора.

Рис. 8. Управляемый трехфазный выпрямитель

Управляемый выпрямитель в своей основе не отличается от неуправляемого за исключением того, что тиристор управляется сигналом а и начинает проводить с момента, когда начинает проводить обычный диод, до момента, который находится на 30° позже точки перехода напряжения через нуль.

Регулирование значения а позволяет изменять величину выпрямленного напряжения. Управляемый выпрямитель формирует постоянное напряжение, среднее значение которого равно 1,35 х напряжение сети x cos α

Рис. 9. Выходное напряжение управляемого трехфазного выпрямителя

По сравнению с неуправляемым выпрямителем управляемый имеет более значительные потери и вносит более высокие помехи в сеть питания, поскольку при более коротком времени пропускания тиристоров выпрямитель отбирает от сети больший реактивный ток.

Преимуществом управляемых выпрямителей является их способность возвращать энергию в питающую сеть.

Промежуточная цепь

Промежуточную цепь можно рассматривать как хранилище, из которого электродвигатель может получать энергию через инвертор. В зависимости от выпрямителя и инвертора, возможны три принципа построения промежуточной цепи.

Инверторы - источники тока (1-преобразователи)

Рис. 10. Промежуточная цепь изменяющегося постоянного тока

В случае инверторов - источников тока промежуточная цепь содержит катушку большой индуктивности и сопрягается только с управляемым выпрямителем. Катушка индуктивности преобразует изменяющееся напряжение выпрямителя в изменяющийся постоянный ток. Величину напряжения электродвигателя определяет нагрузка.

Инверторы - источники напряжения (U-преобразователи)

Рис. 11. Промежуточная цепь постоянного напряжения

В случае инверторов - источников напряжения промежуточная цепь представляет собой фильтр, содержащий конденсатор, и может сопрягаться с выпрямителем любого из двух типов. Фильтр сглаживает пульсирующее постоянное напряжение (U21) выпрямителя.

В управляемом выпрямителе напряжение на данной частоте постоянно и подается на инвертор в качестве истинного постоянного напряжения (U22)c изменяющейся амплитудой. 

В неуправляемых выпрямителях напряжение на входе инвертора представляет собой постоянное напряжение с неизменной амплитудой.

Промежуточная цепь изменяющегося постоянного напряжения

Рис. 12. Промежуточная цепь изменяющегося напряжения

В промежуточных цепях изменяющегося постоянного напряжения можно перед фильтром включить прерыватель, как это показано на рис. 12.

Прерыватель содержит транзистор, который действует как переключатель, включая и выключая напряжение выпрямителя. Система регулирования управляет прерывателем путем сравнения изменяющегося напряжения после фильтра (U v) с входным сигналом. Если существует разность, соотношение регулируется путем изменения времени, в течение которого транзистор открыт, и времени, когда он закрыт. Тем самым изменяется эффективное значение и величина постоянного напряжения, что может быть выражено формулой

U v = U х t on / (t on + t off)

Когда транзистор прерывателя размыкает цепь тока, катушка индуктивности фильтра делает напряжение на транзисторе бесконечно большим. Чтобы избежать этого прерыватель защищен быстропереключающимся диодом. Когда транзистор открывается и закрывается, как показано на рис. 13, напряжение будет наибольшим в режиме 2. 

Рис. 13. Транзистор-прерыватель управляет напряжением промежуточной цепи

Фильтр промежуточной цепи сглаживает прямоугольное напряжение после прерывателя. Конденсатор и катушка индуктивности фильтра поддерживают постоянство напряжения на данной частоте.

В зависимости от построения промежуточная цепь может также выполнять дополнительные функции, в число которых входят:

Развязка выпрямителя от инвертора

Уменьшение уровня гармоник

Накопление энергии с целью ограничения скачков прерывистой нагрузки.

Инвертор

Инвертор - последнее звено в преобразователе частоты перед электродвигателем и место, где происходит окончательная адаптация выходного напряжения.

Преобразователь частоты обеспечивает штатные рабочие условия во всем диапазоне регулирования путем адаптации выходного напряжения к режиму нагрузки. Это позволяет поддерживать оптимальное намагничивание электродвигателя.

Из промежуточной цепи инвертор получает

Изменяющийся постоянный ток,

Изменяющееся напряжение постоянного тока или

Неизменное напряжение постоянного тока.

Благодаря инвертору, в каждом из этих случаях на электродвигатель подается изменяющаяся величина. Другими словами, в инверторе всегда создается нужная частота напряжения, подаваемого на электродвигатель. Если ток или напряжение являются изменяющимися, инвертор создает только нужную частоту. Если напряжение неизменно, инвертор создает для электродвигателя как нужную частоту, так и нужное напряжение.

Даже если инверторы работают различным образом, их основная структура всегда одинакова. Основными элементами инверторов являются управляемые полупроводниковые приборы, включенные попарно в трех ветвях.

В настоящее время тиристоры в большинстве случаев заменены высокочастотными транзисторами, которые способны открываться и закрываться очень быстро. Частота коммутации обычно находится в пределах от 300 Гц до 20 кГц и зависит от используемых полупроводниковых приборов. 

Полупроводниковые приборы в инверторе открываются и закрываются сигналами, формируемыми схемой управления. Сигналы могут формироваться несколькими различными способами.

Рис. 14. Обычный инвертор тока промежуточной цепи изменяющегося напряжения.

Обычные инверторы, коммутирующие, главным образом, ток промежуточной цепи изменяющегося напряжения, содержат шесть тиристоров и шесть конденсаторов.

Конденсаторы позволяют тиристорам открываться и закрываться таким образом, что ток в фазных обмотках сдвигается на 120 градусов и должен быть адаптирован к типоразмеру электродвигателя. Когда на клеммы электродвигателя периодически подается ток в последовательности U-V, V-W, W-U, U-V..., возникает прерывистое вращающееся магнитное поле требуемой частоты. Даже если ток электродвигателя при этом имеет почти прямоугольную форму, напряжение электродвигателя будет практически синусоидальным. Однако при включении или выключении тока всегда возникают броски напряжения.

Конденсаторы отделяются от нагрузочного тока электродвигателя диодами. 

Рис. 15. Инвертор для изменяющегося или неизменного напряжения промежуточной цепи и зависимость выходного тока от частоты коммутации инвертора

Инверторы с изменяющимся или неизменным напряжением промежуточной цепи содержат шесть коммутационных элементов и вне зависимости от вида используемых полупроводниковых приборов работают почти одинаково. Схема управления открывает и закрывает полупроводниковые приборы с помощью нескольких различных способов модуляции, изменяя тем самым выходную частоту преобразователя частоты.

Первый способ предназначен для изменяющегося напряжения или тока в промежуточной цепи.

Интервалы, в течение которых отдельные полупроводниковые приборы открыты, расположены в последовательности, используемой для получения требуемой выходной частоты.

Эта последовательность коммутации полупроводниковых приборов управляется величиной изменяющегося напряжения или тока промежуточной цепи. Благодаря использованию генератора колебаний, управляемого напряжением, частота всегда отслеживает амплитуду напряжения. Такой вид управления инвертором называется амплитудно-импульсной модуляцией (АИМ).

Для фиксированного напряжения промежуточной цепи используется другой основной способ. Напряжение электродвигателя становится изменяющимся благодаря подаче напряжения промежуточной цепи на обмотки электродвигателя в течение более длинных или более коротких интервалов времени. 

Рис. 16 Модуляция амплитуды и длительности импульсов

Частота изменяется путем изменения импульсов напряжения вдоль оси времени - положительно в течение одного полупериода и отрицательно - в течение другого.

Поскольку при этом способе происходит изменение длительности (ширины) импульсов напряжения, его называют широтно-импульсной модуляцией (ШИМ). ШИМ-модуляция (и связанные с ней способы, например синусоидально-управляемая ШИМ) является наиболее распространенным способом управления инвертора.

При ШИМ-модуляции схема управления определяет моменты коммутации полупроводниковых приборов при пересечении пилообразного напряжения и наложенного синусоидального опорного напряжения (синусоидально-управляемая ШИМ). Другими перспективными способами ШИМ-модуляции являются модифицированные методы широтно-импульсной модуляции, такие как WC и WC plus , разработанные корпорацией Danfoss.

Транзисторы

Поскольку транзисторы могут коммутироваться с высокими скоростями, электромагнитные помехи, возникающие при «импульсном» (намагничивании электродвигателя, уменьшаются. 

Другим преимуществом высокой частоты коммутации является гибкость модуляции выходного напряжения преобразователя частоты, что позволяет вырабатывать синусоидальный ток электродвигателя, в то время как схема управления должна просто открывать и закрывать транзисторы инвертора.

Частота коммутации инвертора - это «палка о двух концах», поскольку высокие частоты могут привести к нагреву электродвигателя и появлению больших пиковых напряжений. Чем выше частота коммутации, тем выше потери.

С другой стороны, низкая частота коммутации может привести с сильному акустическому шуму.

Высокочастотные транзисторы можно разделить на три основные группы:

Биполярные транзисторы (LTR)

Униполярные полевые МОП-транзисторы (MOS-FET)

Биполярные транзисторы с изолированным затвором (IGBT)

В настоящее время наиболее широко используются транзисторы IGBT, поскольку в них управляющие свойства транзисторов MOS-FET сочетаются с выходными свойствами транзисторов LTR; кроме того, они имеют надлежащий диапазон мощностей, подходящую проводимость и частоту коммутации, что позволяет значительно упростить управление современными преобразователями частоты.

В случае транзисторов IGBT как элементы инвертора, так и средства управления инвертором помещаются в опрессованный модуль, называемый "интеллектуальным силовым модулем" (IPM).

Амплитудно-импульсная модуляция (АИМ)

Амплитудно-импульсная модуляция используется для преобразователей частоты с изменяющимся напряжением промежуточной цепи.

В преобразователях частоты с неуправляемыми выпрямителями амплитуда выходного напряжения формируется прерывателем промежуточной цепи, а если выпрямитель является управляемым, амплитуда получается непосредственно.

Рис. 20. Формирование напряжения в преобразователях частоты с прерывателем в промежуточной цепи

Транзистор (прерыватель) на рис. 20 отпирается или запирается схемой управления и регулирования. Значения времени коммутации зависит от номинального значения (входного сигнала) и измеренного сигнала напряжения (фактического значения). Фактическое значение измеряется на конденсаторе.

Катушка индуктивности и конденсатор действуют как фильтр, который сглаживает пульсации напряжения. Пик напряжения зависит от времени открывания транзистора, и если номинальное и фактическое значения различаются между собой, прерыватель работает до тех пор, пока не будет достигнут требуемый уровень напряжения.

Регулирование частоты

Частота выходного напряжения изменяется инвертором в течение периода, при этом полупроводниковые коммутационные устройства срабатывают в течение периода много раз.

Длительность периода можно регулировать двумя способами:

1.непосредственно входным сигналом или

2.с помощью изменяющегося постоянного напряжения, которое пропорционально входному сигналу.

Рис. 21а. Регулирование частоты с помощью напряжения промежуточной цепи 

Широтно-импульсная модуляция является наиболее распространенным способом формирования трехфазного напряжения с соответствующей частотой.

При широтно-импульсной модуляции формирование полного напряжения промежуточной цепи (≈ √2 х U mains) определяется длительностью и частотой коммутации силовых элементов. Частота повторения ШИМ-импульсов между моментами включения и выключения является переменной и позволяет осуществлять регулировку напряжения.

Имеются три основных варианта задания режимов коммутации в инверторе с управлением посредством широтно-импульсной модуляции.

1.Синусоидально-управляемая ШИМ

2.Синхронная ШИМ

3.Асинхронная ШИМ

Каждая ветвь трехфазного ШИМ-инвертора может иметь два различных состояния (включено и выключено).

Три переключателя образуют восемь возможных коммутационных комбинаций (2 3), и, следовательно, восемь цифровых векторов напряжения на выходе инвертора или на обмотке статора подключенного электродвигателя. Как показано на рис. 21b, эти векторы 100, 110, 010, 011, 001, 101 находятся в углах описанного шестиугольника, используя в качестве нулевых векторы 000 и 111.

В случае коммутационных комбинаций 000 и 111 создается один и тот же потенциал на всех трех выходных клеммах инвертора - либо положительный, либо отрицательный относительно промежуточной цепи (см. рис. 21с). Для электродвигателя это означает эффект, близкий к короткому замыканию клемм; к обмоткам электродвигателя также приложено напряжение О В.

Синусоидально-управляемая ШИМ

При синусоидально-управляемой ШИМ для управления каждым инверторным выходом используется синусоидальное опорное напряжение (Us) Длительность периода синусоидального напряжения соответствует требуемой основной частоте выходного напряжения. На три опорных напряжения накладывается пилообразное напряжение (U D) см. рис. 22.

Рис. 22. Принцип действия синусоидально-управляемой ШИМ (с двумя опорными напряжениями)

При пересечении пилообразного напряжения и синусоидальных опорных напряжений полупроводниковые приборы инверторов либо открываются, либо закрываются.

Пересечения определяются электронными элементами платы управления. Если пилообразное напряжения больше синусоидального, то при уменьшении пилообразного напряжения выходные импульсы изменяются от положительного значения до отрицательного (или от отрицательного до положительного), так что выходное напряжение преобразователя частоты определяется напряжением промежуточной цепи. 

Выходное напряжение изменяется с помощью отношения между длительностью открытого и закрытого состояния, причем для получения требуемого напряжения это отношение можно менять. Таким образом, амплитуда отрицательных и положительных импульсов напряжения всегда соответствует половине напряжения промежуточной цепи.

Рис. 23. Выходное напряжение синусоидально-управляемой ШИМ

При низких частотах статора время в закрытом состоянии увеличивается и может оказаться настолько большим, что окажется невозможным поддерживать частоту пилообразного напряжения.

Это увеличивает период отсутствия напряжения, и электродвигатель будет работать неравномерно. Чтобы избежать этого, на низких частотах можно удвоить частоту пилообразного напряжения. 

Фазное напряжение на выходных клеммах преобразователя частоты соответствует половине напряжения промежуточной цепи, деленной на √ 2, т.е. равно половине напряжения питающей сети. Линейное напряжение на выходных клеммах в √ 3 раз больше фазного напряжения, т.е. равно напряжению питающей сети, умноженному на 0,866.

Инверторе ШИМ-управлением, который работает исключительно с модуляцией опорным синусоидальным напряжением, может подавать напряжение, равное 86,6 % номинального напряжения (см. рис. 23).

При использовании чисто синусоидальной модуляции выходное напряжение преобразователя частоты не может достигнуть напряжения электродвигателя, поскольку выходное напряжение также будет меньше на 13 %.

Однако требуемое дополнительное напряжение можно получить путем уменьшения числа импульсов, когда частота превышает примерно 45 Гц, но этот способ имеет некоторые недостатки. В частности, он вызывает ступенчатое изменение напряжения, что приводит к неустойчивой работе электродвигателя. Если число импульсов уменьшается, возрастают высшие гармоники на выходе преобразователя частоты, что увеличивает потери в электродвигателе.

Иной способ решения данной проблемы связан с использованием других опорных напряжений вместо трех синусоидальных. Эти напряжения могут быть любой формы (например, трапецеидальной или ступенчатой).

Например, одно общее опорное напряжение использует третью гармонику синусоидального опорного напряжения. Получить такой режим коммутации полупроводниковых приборов инвертора, который увеличит выходное напряжение преобразователя частоты, можно путем увеличения амплитуды синусоидального опорного напряжения на 15,5% и добавления к нему третьей гармоники.

Синхронная ШИМ

Основная трудность использования метода синусоидально-управляемой ШИМ заключается в необходимости определения оптимальных значений времени коммутации и угла для напряжения в течение заданного периода. Эти значения времени коммутации должны устанавливаться таким образом, чтобы допускать только минимум высших гармоник. Такой режим коммутации сохраняется только в течение заданного (ограниченного) диапазона частот. Работа за пределами этого диапазона требует использования другого метода коммутации.

Асинхронная ШИМ

Необходимость ориентации на поле и обеспечения быстродействия системы в отношении крутящего момента и регулирования скорости трехфазных приводов переменного тока (включая сервоприводы) требует ступенчатого изменения амплитуды и угла напряжения инвертора. Использование режима коммутации «обычной» или синхронной» ШИМ не позволяет производить ступенчатое изменение амплитуды и угла напряжения инвертора.

Одним из способов выполнения этого требования является асинхронная ШИМ, при которой вместо синхронизации модуляции выходного напряжения с выходной частотой, как это обычно делается для уменьшения гармоник в электродвигателе, производится модуляция цикла векторного регулирования напряжения, что приводит к синхронной связи с выходной частотой.

Существуют два основных варианта асинхронной ШИМ:

SFAVM (Stator Flow-oriented Asynchronous Vector Modulation = (синхронная векторная модуляция, ориентированная на магнитный поток статора)

60° AVM (Asynchronous Vector Modulation = асинхронная векторная модуляция).

SFAVM - пространственно-векторный способ модуляции, который позволяет случайным образом, но скачкообразно изменять напряжение, амплитуду и угол инвертора в течение времени коммутации. Этим достигаются повышенные динамические свойства.

Главной целью применения такой модуляции является оптимизация магнитного потока статора с помощью напряжения статора с одновременным уменьшением пульсаций крутящего момента, поскольку отклонение угла зависит от последовательности коммутации и может вызвать увеличение пульсаций момента. Поэтому последовательность коммутации должна вычисляться таким образом, чтобы с вести к минимуму отклонение угла вектора. Переключение между векторами напряжения основано на вычислении желательной траектории магнитного потока в статоре электродвигателя, которая, в свою очередь, определяет крутящий момент.

Недостатком прежних, обычных ШИМ-систем питания были отклонения амплитуды вектора магнитного потока статора и угла магнитного потока. Эти отклонения неблагоприятно влияли на вращающееся поле (крутящий момент) в воздушном зазоре электродвигателя и вызывали пульсацию крутящего момента. Влияние отклонения U амплитуды пренебрежимо мало и может быть дополнительно уменьшено путем увеличения частоты коммутации. 

Формирование напряжения электродвигателя

Стабильная работа соответствует регулированию вектора напряжения машины U wt таким образом, чтобы он описывал окружность (см. рис. 24).

Вектор напряжения характеризуется величиной напряжения электродвигателя и скорости вращения, что соответствует рабочей частоте в рассматриваемый момент времени. Напряжение электродвигателя формируется путем создания средних значений с помощью коротких импульсов из соседних векторов.

Способ SFAVM, разработанный корпорацией Danfoss, наряду с прочими обладает следующими свойствами:

Вектор напряжения можно регулировать по амплитуде и фазе без отклонения от установленного задания.

Последовательность коммутации всегда начинается с 000 или 111. Это позволяет вектору напряжения иметь три режима коммутации.

Среднее значение вектора напряжения получается с помощью коротких импульсов соседних векторов, а также нулевых векторов 000 и 111.

Схема управления

Схема управления, или плата управления - четвертый главный элемент преобразователя частоты, который предназначен для решения четырех важных задач:

Управление полупроводниковыми элементами преобразователя частоты.

Обмен данными между преобразователями частоты и периферийными устройствами.

Сбор данных и формирование сообщений о неисправностях.

Выполнение функций защиты преобразователя частоты и электродвигателя.

Микропроцессоры увеличили быстродействие схемы управления, существенно расширили область применения приводов и уменьшили количество необходимых вычислений.

Микропроцессор встраивается в преобразователь частоты и всегда способен определять оптимальную импульсную комбинацию для каждого рабочего состояния.

Схема управления для АИМ-преобразователя частоты

Рис. 25 Принцип действия схемы управления для промежуточной цепи, управляемой прерывателем.

На рис. 25 показан преобразователь частоты с АИМ-управлением и прерывателем промежуточной цепи. Схема управления управляет преобразователем (2) и инвертором (3). 

Управление производится по мгновенному значению напряжения промежуточной цепи.

Напряжение промежуточной цепи управляет схемой, которая действует как счетчик адреса в памяти для хранения данных. Память хранит выходные последовательности для импульсной комбинации инвертора. Когда напряжение промежуточной цепи увеличивается, счет происходит быстрее, последовательность заканчивается скорее, а выходная частота возрастает.

Что касается управления прерывателем, то напряжение промежуточной цепи сначала сравнивается с номинальным значением опорного сигнала-сигнала напряжения. Ожидается, что этот сигнал напряжения дает правильные значения выходного напряжения и частоты. Если изменяют опорный сигнал и сигнал промежуточной цепи, ПИ-регулятор информирует схему о том, что необходимо изменить время цикла. Это вызывает подстройку напряжения промежуточной цепи по опорному сигналу.

Обычным методом модуляции для управления преобразователем 1астоты является амплитудно-импульсная модуляция (АИМ). Широтно-импульсная модуляция (ШИМ) является более современным методом.

Управление по полю (векторное управление)

Векторное управление может быть организовано несколькими способами. Основным различием способов являются критерии, которые используются при вычислении значений активного тока, тока намагничивания (магнитного потока) и крутящего момента.

При сравнении между собой двигателей постоянного тока и трехфазных асинхронных двигателей (рис. 26) выявляются определенные проблемы. На постоянном токе параметры, которые важны для создания крутящего момента, - магнитный поток (Ф) и ток якоря - фиксированы по отношению к размеру и расположению фазы и определяются ориентацией обмоток возбуждения и положением угольных щеток (рис. 26а).

В двигателе постоянного тока ток якоря и ток, создающий магнитный поток, расположены под прямым углом друг к другу и их значения не очень велики. В асинхронном электродвигателе положение магнитного потока (Ф) и тока ротора (I,) зависит от нагрузки. Кроме того, в противоположность двигателю постоянного тока, фазовые углы и ток не могут быть непосредственно определены по размеру статора.

Рис. 26. Сравнение машины постоянного тока и асинхронной машины переменного тока

Однако с помощью математической модели можно вычислить крутящий момент по зависимости между магнитным потоком и током статора.

Из измеренного тока статора (l s) выделяется составляющая (l w), которая создает крутящий момент с магнитным потоком (Ф) при прямых углах между двумя этими переменными (l в). Тем самым создается магнитный поток электродвигателя (рис. 27).


Рис. 27. Расчет составляющих тока для регулирования по полю

С помощью этих двух составляющих тока можно независимо влиять на крутящий момент и магнитный поток. Однако ввиду определенной сложности вычислений на основе динамической модели электродвигателя, такие вычисления рентабельны только в цифровых приводах.

Поскольку по такому методу регулирование возбуждения, которое не зависит от нагрузки, отделено от регулирования крутящего момента, то можно динамически управлять асинхронным двигателем так же, как и двигателем постоянного тока - при условии, что имеется сигнал обратной связи. Этот способ управления трехфазным двигателем переменного тока обладает следующими преимуществами:

Хорошая реакция на изменения нагрузки

Точное регулирование мощности

Полный крутящий момент при нулевой скорости

Рабочие характеристики сравнимы с характеристиками приводов постоянного тока. 

Регулирование V/f-характеристик и вектора магнитного потока

В последние годы разработаны системы регулирования скорости трехфазных двигателей переменного тока на основе двух разных принципов управления:

нормального V/f-регулирования, или СКАЛЯРНОГО управления, и регулирования вектора магнитного потока.

Оба метода имеют свои преимущества, зависящие от конкретных требований к рабочим характеристикам привода (динамике) и точности.

Регулирование V/f-характеристик имеет ограниченный диапазон регулирования скорости (приблизительно 1:20), и на малой скорости требуется другой принцип регулирования (компенсация). При использовании этого метода относительно просто адаптировать преобразователь частоты к электродвигателю, причем регулирование невосприимчиво к мгновенным изменениям нагрузки во всем диапазоне скоростей.

В приводах с регулированием магнитного потока преобразователь частоты должен точно конфигурироваться под электродвигатель, что требует детального знания его параметров. Также необходимы дополнительные компоненты для получения сигнала обратной связи.

Некоторые преимущества этого типа управления:

Быстрая реакция на изменения скорости и широкий диапазон скоростей

Лучшая динамическая реакция на изменения направления

Обеспечивается единый принцип управления во всем диапазоне скоростей.

Для пользователя оптимальным решением было бы сочетание наилучших свойств обоих принципов. Очевидно, что одновременно необходимы и такое свойство, как устойчивость к ступенчатой нагрузке/разгрузке во всем диапазоне скоростей, что обычно является сильной стороной V/f-регулирования, и быстрая реакция на изменения задания скорости (как при управлении по полю).

Частотное регулирование угловой скорости вращения электропривода с асинхронным двигателем в настоящее время широко применяется, так как позволяет в широком интервале плавно изменять обороты вращения ротора как выше, так и ниже номинальных значении.

Частотные преобразователи являются современными, высокотехнологичными устройствами, обладающими большим диапазоном регулирования, имеющими обширный набор функций для управления асинхронными двигателями. Высочайшее качество и надежность дают возможность применять их в различных отраслях для управления приводами насосов, вентиляторов, транспортеров и т.д.

Частотные преобразователи по напряжению питания подразделяются на однофазные и трехфазные, а но конструктивному исполнению на электромашинные вращающиеся и статические. В электромашинных преобразователях переменная частота получается за счет использования обычных или специальных электрических машин. В изменение частоты питающего тока достигается за счет применения не имеющих движения электрических элементов.



Преобразователи частоты для однофазной сети позволяют обеспечить электропривод производственного оборудования мощностью до 7,5 кВт. Особенностью конструкции современных однофазных преобразователей является то, что на входе имеется одна фаза с напряжением 220В, а на выходе - три фазы с тем же значением напряжения, что позволяет подключать к устройству трехфазные электродвигатели без применения конденсаторов.

Преобразователи частоты с питанием от трехфазной сети 380В выпускаются в диапазоне мощностей от 0,75 до 630 кВт. В зависимости от величины мощности устройства изготавливаются в полимерных комбинированных и металлических корпусах.

Самой популярной стратегией управления асинхронными электродвигателями является векторное управление. В настоящее время большинство частотных преобразователей реализуют векторное управление или даже векторное бездатчиковое управление (этот тренд встречается в частотных преобразователях, первоначально реализующих скалярное управление и не имеющих клемм для подключения датчика скорости).

Исходя из вида нагрузки на выходе, преобразователи частоты подразделяются по типу исполнения:

    для насосного и вентиляторного привода;

    для общепромышленного электропривода;

    эксплуатируется в составе электродвигателей, работающих с перегрузкой.


Современные преобразователи частоты обладают разнообразным набором функциональных особенностей, например, имеют ручное и автоматическое управление скоростью и направлением вращения двигателя, а также на панели управления. Наделены возможностью регулирования диапазона выходных частот от 0 до 800 Гц.

Преобразователи способны выполнять автоматическое управление асинхронным двигателем по сигналам с периферийных датчиков и приводить в действие электропривод по заданному временному алгоритму. Поддерживать функции автоматического восстановления режима работы при кратковременном прерывании питания. Выполнять управление переходными процессами с удаленного пульта и осуществлять защиту электродвигателей от перегрузок.

Связь между угловой скоростью вращения и частотой питающего тока вытекает из уравнения

ω о = 2πf 1 /p

При неизменном напряжении источника питания U1 и изменении частоты изменяется магнитный поток асинхронного двигателя. При этом для лучшего использования магнитной системы при снижении частоты питания необходимо пропорционально уменьшать напряжение, иначе значительно увеличатся намагничивающий ток и потери в стали.

Аналогично при увеличении частоты питания следует пропорционально увеличивать напряжение, чтобы сохранить магнитный поток постоянным, так как в противном случае (при постоянном моменте на валу) это приведет к нарастанию тока ротора, перегрузке его обмоток по току, снижению максимального момента.

Рациональный закон регулирования напряжения зависли от характера момента сопротивления.

При постоянном моменте статической нагрузки (Mс = const) напряжение должно регулироваться пропорционально его частоте U1/f1 = const. Для вентиляторного характера нагрузки соотношение принимает вид U1/f 2 1 = const.

При моменте нагрузки, обратно пропорциональном скорости U1/√ f1 = const.

На рисунках ниже представлены упрощенная схема подключения и механические характеристики асинхронного двигателя при частотном регулировании угловой скорости.

Частотное регулирование скорости асинхронного двигателя позволяет изменять угловую скорость вращения в диапазоне - 20...30 к 1. Регулирование скорости асинхронного двигателя вниз от основной осуществляется практически до нуля.

При изменении частоты питающей сети верхний предел частоты вращения асинхронного двигателя зависит от ее механических свойств, тем более что на частотах выше номинальной асинхронные двигатель работает с лучшими энергетическими показателями, чем на пониженных частотах. Поэтому, если в системе привода используется редуктор, это управление двигателем по частоте следует производить не только вниз, но и вверх от номинальной точки, вплоть до максимальной частоты вращения, допустимой но условиям механической прочности ротора.

При увеличении оборотов вращения двигателя выше указанного значения в ею паспорте частота источника питания не должна превышать номинальную не более чем 1,5 - 2 раза.

Частотный способ является наиболее перспективным для регулирования асинхронного двигателя с короткозамкнутым ротором. Потери мощности мри гаком регулировании невелики, поскольку не сопровождаются увеличением . Получаемые при этом механические характеристики обладают высокой жесткостью.

Лучшие статьи по теме