Как настроить смартфоны и ПК. Информационный портал

Более поздние решения.

Athlon 64 X2 устарел, как физически, так и морально. Такие устройства
были представлены в далеком 2006 году. Это были первые многоядерные решения
компании АМД. Оценить их важность на сегодняшний день не представляет особого труда. Их выпуск стал первым эволюционным шагом данного производителя в сфере высокотехнологичных решений. Именно он существенно повлиял на развитие компьютерной индустрии. Сейчас уже никого не удивишь 8-ми ядерным ЦПУ. Это уже стало нормой. А вот тогда подобное решение произвело своеобразную революцию, плодами которой мы и по сей день пользуемся.

История

Первым 2-х ядерным ЦПУ в нише домашних ПК стал продукт извечного конкурента АМД - компании "Интел". Это был процессор "пентиум" с индексом ХЕ 840. Устанавливался он в который был в то время основным у данного производителя. Увеличение количества ядер вызвало необходимость снижения Это привело к снижению производительности в однопоточных приложениях. Аналогичный результат получил и продукт его постоянного конкурента - процессор AMD Athlon 64 X2. Но за счет того, что такие решения были изначально ориентированы под многопоточность, эффект был не настолько сильным, как у основного конкурента. По мере появления софта, который способен полностью загрузить два физических ядра, расстановка сил постепенно изменилась. И такие решения постепенно вытеснили ЦПУ с 1-им ядром из обихода. Да, сейчас еще продаются подобные устройства, но они большей часть используются для офисных ПК, где на первый план выходит работа в офисных приложениях и низкая стоимость готовой системы. А для игровых систем рекомендуется брать 4, 6 или 8 ядер. В крайнем случае можно остановить выбор и на 2-х ядрах, но это существенно скажется на качестве игры не в лучшую сторону. Такой расклад был заложен более 5 лет назад, и один из его основоположников - процессор AMD Athlon 64 X2.

Модификации

Изначально такие ЦПУ устанавливались в который был самым прогрессивным у данного производителя на то время. Сразу было представлено 4 модели процессора. Младшим из них стал именно AMD Athlon 64 X2 4200. Остальные имели схожее название, но отличались индексом. Появились модификации 4400, 4600, а флагман этой линейки имел индекс 4800. Также обязательным атрибутом обозначений этих ЦПУ был «+», который добавлялся в конце наименования. Частота базовой модели составляла 2200 МГц. Также среди архитектурных особенностей стоит отметить кеш, размер которого у младшей модели был 1Мб. При этом на каждое из ядер приходилась лишь его половина. Остальные модификации могли похвастаться более высокой частотой и увеличенным размером кеша.

Более поздние решения

Чуть позже на рынке появились и более производительные продукты. Логическим развитием в этом направлении стало появление таких ЦПУ под платформу АМ2. Размер кеша у них был аналогичным, как у предшественника. А вот частоты существенно выросли и составили, например, для ЦПУ модели AMD Athlon 64 X2 5000 - 2700 МГц. Также еще одним нововведением стала поддержка новой памяти, которая называлась DDR2. Но, в принципе, у этих процессоров, срок между появлением которых составляет чуть меньше 2-х лет, много общего.

Заключение

Процессор AMD Athlon 64 X2 является одним из родоначальников эры параллельных вычислений на одном кристалле. Если внимательно к нему присмотреться, то можно с легкостью найти много общего с новыми решениями АМД. И тут ничего удивительного, ведь они построены по схожей архитектуре, которая за последние 5 лет претерпела определенные изменения, но также и сохранила общие черты.

Длительное время Advanced Micro Devices, подобно Cyrix, производила центральные процессоры 286, 386 и 486, которые были основаны на разработках Intel. К5 был первым независимо созданным х86 процессором, на который AMD возлагала большие надежды.

Однако, покупка компанией AMD основанного в Калифорнии конкурента весной 1996 года, кажется, создала возможность лучше подготовиться к своей следующей атаке на Intel. К6 начал жизнь как Nx686, будучи переименованным после приобретения NextGen. Серия ММХ-совместимых процессоров К6 была запущена в середине 1997 года, за несколько недель до Cyrix 6х86МХ, и сразу была одобрена пользователями.

Изготовленный по 5-слойной 0.35-мкм технологии, К6 был почти на 20 % меньше, чем Pentium Pro и при этом содержал на 3.3 миллионов транзисторов больше (8.8 против 5.5 миллионов). Большинство этих дополнительных транзисторов находилось в кэше первого уровня на 64 Кбайт (на кэш команд 32 Кбайт и на кэш данных 32 Кбайт). Это равносильно четырем Pentium Pro или двум Pentium ММХ и Pentium 2.

Центральный процессор К6 поддерживал технологию ММХ Intel, включая 57 новых х86 команд, разработанных для развития мультимедийного программного обеспечения. Как и Pentium Pro, К6 был многим обязан классическим технологиям RISC. Используя суперскалярную микроархитектуру AMD RISC86, чип декодировал каждую х86-инструкцию в ряд более простых действий, которые могли быть обработаны, используя типичные принципы RISC - такие, как выполнение вне естественного порядка, переименование регистров, предсказание переходов, спекулятивное исполнение, опережающая выборка данных.

Центральный процессор К6 начинал с версий 166.200 и 233 МГц. Уровень его производительности был очень схож с Pentium Pro соответствующих частот с его максимальным 512 Кбайт кэшем второго уровня. Общее с чипом Cyrix MX (но в несколько меньшей степени) - работа с плавающей запятой - была областью относительной слабости по сравнению с Pentium Pro или Pentium 2. Однако проникновению процессора на рынок в конце 1997 - начале 1998 года препятствовали проблемы, которые возникли у AMD при перемещении ее нового производственного 0.25-мкм процесса из лабораторий на заводы-изготовители. Это привело к падению производства центральных процессоров на 200 и 233 МГц, задержке введения чипа 266 МГц и отмене чипа 300 МГц.

Процессор AMD К6-2

Процессоры AMD К6-2 с 9.3 миллионами транзисторов производились по 0.25-микронной технологии AMD. Процессор был упакован в 100 МГц Sирег7-совместимую, 321-контактную керамическую плату (ceramic pin grid array (CPGA) package).

K6-2 включает инновационную эффективную микроархитектуру RISC86, большой (64 Кбайт) кэш первого уровня (двухпортовый кэш данных на 32 Кбайт, кэш команд на 32 Кбайт с дополнительным предрасшифровывающим кэшем на 20 Кбайт), а также улучшенный модуль работы с плавающей запятой. Эффективная производительность при его запуске в середине 1998 года была оценена в 300 МГц, к началу 1999 года самым быстрым из доступных процессоров была версия 450 МГц.

Трехмерные возможности К6-2 представляли другое важное достижение. Они были воплощены в AMD технологии 3DNow!, как новый набор из 21 команды, который дополнял стандартные команды ММХ, уже включенные в архитектуру К6, что ускоряло обработку трехмерных приложений.

Процессор AMD K6-3

В феврале 1999 года AMD объявила о начале выпуска партии 400 МГц AMD К6-lll процессора под кодовым названием «Sharptooth» и опробовала 450 МГц версию. Ключевой особенностью этого нового процессора была инновационная разработка - «Трехуровневый кэш».

Традиционно процессоры персональных компьютеров использовали два уровня кэша:

  • кэш первого уровня (L1), который обычно расположен на кристалле;
  • кэш второго уровня (L2), который мог располагаться либо вне центрального процессора, на материнской плате или слоте, либо непосредственно на чипе центрального процессора.

Общее эмпирическое правило при проектировании подсистемы кэша - чем больше и быстрее кэш, тем выше производительность (ядро центрального процессора может быстрее получить доступ к инструкциям и данным).

Признавая выгоды большого и быстрого кэша в удовлетворении потребностей приложений, все более требовательных к производительности персональные компьютеры, «Трехуровневый кэш» компании AMD вводил архитектурные новшества кэша, разработанные для увеличения производительности персонального компьютера на основе платформы Super7:

  • внутренний L2-кэш (256 Кбайт), работающий на полной скорости процессора AMD-K6-3 и дополняющий кэш L1 (64 Кбайт), который был стандартен для всего семейства процессоров AMD-K6;
  • многопортовый внутренний кэш, позволяющий одновременное 64-битовое чтение и запись как кэшу L1, так и L2;
  • первичную процессорную шину (100 МГц), обеспечивающую соединение с резидентной кэш памятью на системной плате, расширяемой от 512 до 2048 Кбайт.

Таблица основных характеристик процессоров AMD

Тип процессора Архитектура Год выпуска Кодовое наименование Количество транзисторов, млн Ядро, мм L1 -кэш, Кбайт L2-кэш, Кбайт
AMD K5 K5 1996 SSA/5 4.3 271-161 8+16 Внешн.
1996 Godot 4.3 181 8+16 Внешн.
AMD К6 К6 1997 Nx686 (Model 6) 8.8 162 32+32 Внешн.
1998 Little Foot 8.8 88 32+32 Внешн.
K6-2 1998-2001 Chompers 9.3 81 64 Внешн.
К6 3 1999 Sharptooth 21.3 118 64 256
Athlon К7 1999 Argon 22.0 184 128 512
2000 Pluto 22.0 102 128 512
2000-2001 Thunderbird 37.0 120 64+64 256
Duron 2000-2001 Spitfire 25.0 100 64(|) + 64(D) 64-128
2001-2002 Morgan 25.18 106 128 64
2003 Applebred 37.2 85 128 64
Athlon ХР/МР 2001-2002 Palomino 37.5 130 128 256
2002 Thoroughbred 37.2 85 128 256
2003-2004 Barton 54.3 101 64+64 512
Sempron К7 2004 Thorton 54.3 101 128 256
2004 Thoroubred 37.2 85 128 256
2005 Winchester 68.5 84 128 128
Sempron К7 2005 Palermo 68-75 84 64+64 128-256
2006 Manila 103 81 128 128-256
Athlon 64 К8 2003-2004 Clawhammer 105.9 193 128 512-1024
2004 Newcastle 68.5 144 128 512
2004 Winchester 68.5 84 128 512
2005 Venice 76 84 128 512
2005 San Diego 114 115 128 512-1024
2006 Orleans 129 125 128 512
2006 Manchester 154 147 128 512
Opteron 2003 Sledgehammer 64+64 1024
2005 Venus, Troy, Athens 64+64 1024
Athlon 64 x 2 2-ядерные 2005 Manchester 154 147 128 x 2 512 x 2
2005 Toledo 233 199 128 x 2 512 x 2
2006 Windsor 243 220 128 x 2 512 x 2
2006 Brisbane 153.6 183 128 x 2 1024 x 2
Тип процессора Архитектура Размер минимальной структуры, мкм Тактовая частота шины, МГц Тактовая частота процессора, МГц Потребляемая мощность, Вт Интерфейс
AMD K5 K5 0.5-0.35 50-66 75-100 11-15 Socket 5/7
0.35 60-66 90-115 12-16 Socket 5/7
AMD К6 К6 0.35 CMOS 66 166-300 13-28 Socket 7
0.25 66 200-300 13-28 Socket 7
K6-2 0.25 66-100 266-550 15-30 Super7(321 p)
К6 3 0.25 100 400-450 18-30 Super7
Athlon К7 0.25 200 500-700 36-54 Slot A(575 p)
0.18 200 550-950 31-62 Slot A
0.18 200 700-1.4 ГГц 38-72 Socket A/Slot A
Duron 0.18 200 600-950 27-41 Socket A (Socket 462)
0.18 200 900-1.3 ГГц 44-60 S 462
0.13 266 1.4-1.8 57 S 462
Athlon ХР/МР 0.18 266 1.4-1.7 62-72 Socket 462
0.13 266 1.4-2.25 49-74 S 462
0.13 266-400 1.86-2.33 66-77 Socket A
Sempron К7 0.13 333 1.5-2.0 62 S 754/S 939
0.13 333 1.5-2.0 62 S462
0.09 400 1.6 62 S 754
Sempron К7 0.09 400 1.6-1.8 59-64.0 Socket А/ Socket 754
0.09 400 1.6-2.0 35-62 AM2
Athlon 64 К8 0.13 400 1.8-2.4 89 S 754
0.09 400 1.6-2.4 89 S754
0.09 400 1.8-2.2 67 S 939
0.09 400 2.0-2.4 16-89 S 754
0.09 400 2.2 89 S 939
0.09 400 1.8-2.4 35-62 AM2
0.09 400 2.0-2.2 67 S 939
Opteron 0.13 800/НТ 1.4-2.4 55-95 S 940
0.09 1000/НТ 1.6-3.0 55-95 S 940
Athlon 64 x 2 2-ядерные 0.09 667-800 2.0-2.4 69-110 S939
0.09 2.0-2.4 89-110 S 939
0.09 2.0-2.6 65-89 AM2
0.09 2.0-2.8 65-89 AM2

Проект многопортового внутреннего кэша процессора AMD-K6-3 позволил как кэшу L1 (64 Кбайт), так и кэшу L2 (256 Кбайт) выполнять одновременное 64-битовое чтение и запись операций за один такт процессора. В дополнение к этому многопортовому проекту кэша ядро процессора AMD-K6-I11 было в состоянии получить доступ к кэшам L1 и L2 одновременно, что увеличивало общую пропускную способность центрального процессора.

Процессор AMD Athlon

Выпуск процессора Athlon летом 1999 года был наиболее удачным ходом AMD. Это позволило им гордиться тем, что они произвели первый процессор седьмого поколения (у него было достаточно много радикальных архитектурных отличий от Pentium ll/lll и К6-3, чтобы заслужить название процессора следующего поколения), и это означало также, что они вырвали технологическое лидерство у Intel.

Древнегреческое слово Athlon означает «трофей», или «игры». Athlon - процессор, с помощью которого AMD надеялась увеличить реальное конкурентоспособное присутствие в корпоративном секторе, помимо его традиционного преимущества на потребительском рынке и рынке трехмерных игр. Ядро размещается на кристалле в 102 квадратных миллиметров и содержит приблизительно 22 миллиона транзисторов.

Основные элементы ядра Athlon

Многократные декодеры

Три полных декодера переводят х86-команды в макрооперации (MacroOPs) с фиксированной длиной для более высокой пропускной способности команд и увеличения мощности обработки. Вместо того чтобы выполнять х86 команды с длиной 1-15 байтов, процессор Athlon выполняет макрооперации фиксированной длины.

Блок контроля команд

Как только макрооперация расшифрована, за цикл посылаются до трех макроопераций блоку управления инструкциями (ICU). Это буфер перенаправления макроопераций с 72 входами (ROB), который управляет выполнением каждой макрооперации в целом, осуществляет переименование регистра для операндов, управляет любыми условиями исключения и действиями команды. ICU посылает макрооперацию планировщику исполнения.

Конвейеры исполнения

Athlon содержит 18-разрядный планировщик макроопераций и 36-разрядный планировщик операций мультимедиа и ПТ. Эти планировщики распределяют MacroOPs по девяти независимым конвейерам - три для вычислений с ФТ, три для вычисления адресов и три для выполнения команд ММХ, 3DNow! и операций ПТ для х87.

Супер скалярный блок плавающей точки FPT

Предыдущие центральные процессоры AMD были недостаточно производительными при работе с ПТ по сравнению с Intel. К этому недостатку более чем ответственно отнеслись в Athlon, который характеризуется суперскалярной архитектурой, включающей три конвейера выполнения команд с ПТ вне естественного порядка - FMUL (перемножение с ПТ), FADD (сложение с ПТ) и FSTORE (запись с ПТ). «Суперскалярность» означает способность центрального процессора выполнять более одной команды за такт процессора. Athlon же может выполнять одну операцию над 32-битовым числом с ПТ за такт процессора, что дает производительность в 2.4 Гфлопс при частоте в 600 МГц.

Прогнозирование переходов

Процессор Athlon предлагает сложную динамическую логику прогнозирования ветвления, чтобы минимизировать или устранить задержки из-за команд перехода, широко распространенные в программном обеспечении х86.

Системная шина

Системная шина Athlon - первая системная шина на 200 МГц для х86-платформ. Основанная на протоколе Digital Alpha EV6, первичная шина (FSB) - потенциально расширяемая до 400 МГц и более и, в отличие от разделяемой шины SMP (Symmetric Multi-Processing) проекта Pentium 3, использует архитектуру «точка-точка», чтобы обеспечить широкую полосу пропускания для одно- и многопроцессорных х86 платформ.

Архитектура кэша

Архитектура кэша Athlon существенно превосходит обычные центральные процессоры шестого поколения - полноценный кэш первого уровня 128 Кбайт, в 4 раза больший, чем у Pentium 3, и быстродействующий 64-битовый контроллер вторичного кэша 2-го уровня, поддерживающий от 512 Кбайт до 8 Мбайт.

Расширенный 3D Now

В ответ на Streaming SIMD Extensions (Intel Pentium 3) реализация 3DNow! в Athlon была модернизирована добавлением 24 новых команд к исходной 21 инструкции 3DNow!

Athlon был первоначально доступен в диапазонах скорости 500.550 и 600 МГц и 650 МГц немного позднее (все изготовлены по 0.25-мкм технологии). К концу 1999 года AMD еще более повысила частоту: его ядро К75 (750 МГц) является первым процессором, построенным с использованием алюминиевой 6-слойной технологии 0.18-мкм компании AMD.

Утверждение о том, что это был самый быстрый х86 совместимый центральный процессора тысячелетия, спорно, поскольку Intel быстро ответила объявлением 800 МГц Pentium 3. Однако AMD вскоре вернула лидерство в 2000 году выпуском версий на 800 и 850 МГц и преуспела в опережении Intel в преодолении барьера 1 ГГц буквально через несколько недель.

Процессор Thunderbird

В середине 2000 года была выпущена улучшенная версия Athlon с кодовым названием «Thunderbird».

Технология 0.18-мкм, кэш память 2-го уровня (L2) размером в 256 Кбайт расположена на плате процессора и работает на полной частоте процессора (первые процессоры Athlon имели кэш L2, работавшую на меньших частотах, например при частоте в 1 ГГЦ, память L2 работала на 330 МГц).

Интерфейсы - 462-контактный Socket А и Slot А. Частоты от 0.75 до 1 ГГц. Размещение 256 Кбайт памяти на кристалле привело к увеличению его размера до 120 квадратных миллиметров (102 квадратных миллиметров для ядра). Однако он меньше исходного (0.25-micron) К7 Athlon, который занимает 184 квадратных миллиметров. Добавление 256 Кбайт к L2-кэшу на кристалле весьма увеличивает число транзисторов. Центральный процессор Thunderbird включает 37 миллионов транзисторов, то есть 15 миллионов добавились для размещения кэша L2.

Осенью 2000 года был выпущен чипсет AMD760, обеспечивающий поддержку для памяти DDR SDRAM РС1600 (200 МГц FSB) и РС2100 (266 МГц FSB). Другие особенности - AGP 4-х, 4 порта USB , адресация памяти 8 Гбайт на 4 DIMM и поддержка АТА-100. С этого момента процессоры Athlon выпускались только для разъемов Socket А. Последние из процессоров Athlon/Thunderbird были выпущены летом 2001 года, достигнув частоты 1.4 ГГц.

Процессор Duron

В середине 2000 года был выпущен процессор Duron, предназначенный для дома и офиса. Название происходит от латинского «durare» - «вечный», «длительный». Кэш-память L1 (128 Кбайт) и L2 (64 Кбайт) размещается на плате. Первичная системная шина работает на частоте 200 МГц. Поддерживается улучшенная технология 3DNow! Технология 0.18-мкм, частоты 600.650 и 700 МГц. Интерфейс - 462-контактный разъем Socket А.

Процессор Palomino (Athlon ХР - EXtra Performance)

Процессор выполнен по 0.18-мкм технологии с использованием медных проводников на плате (вместо алюминия), содержит 37.5 миллионов транзисторов на кристалле в 128 квадратных миллиметров. Достигнуто понижение на 20 % энергопотребления сравнительно с Thunderbird. Введен ряд новшеств, в совокупности именуемых AMD как «QuantiSpeed Architecture»:

  • введение дополнительного буфера - буфера быстрого преобразования адреса (БПА, TLB - Processor`s Transition Lookaside Buffer). Это дополнительная кэш память, расположенная между L1 и L2. В частности, TLB содержит данные, которые используются для перевода виртуальных адресов в физические и наоборот;
  • поддержка SSE технологии Intel. В Palomino добавлены еще 52 новые команды SIMD по отношению к ранее имевшимся. Удвоено количество исходных 21 SIMD-команд, реализующих «3DNow!», и получена технология «Enhanced 3DNow!» («3DNow! Professional»);
  • использование технологии упаковки OPGA (organic PGA) для замещения CPGA (ceramic PGA), которая использовалась ранее. Использование пластмасс вместо керамики технологичнее, платы оказываются легче и обладают лучшими тепловыми свойствами. Кроме того, можно плотнее размещать навесные элементы, что уменьшает наводки и помехи. OPGA размещаются на уже известном разъеме Socket А.

Процессор Morgan

Morgan первоначально представлял собой ядро Palomino c удаленными 3/4 кэша L2 (64 Кбайт вместо 256 Кбайт). Размер кристалла - 106 квадратных миллиметров, число транзисторов - 25.18 миллионов. Напряжение питания было изменено с 1.6 до 1.75 В.

Процессор Thoroughbred

Летом 2002 года AMD начала поставлять первый процессор с 0.13-мкм технологией и медными соединениями. Площадь кристалла - 80 квадратных миллиметров (у его предшественников - 128 квадратных миллиметров). Питание - 1.65 В, размеры кэша на кристалле - 128 Кбайт для L1 и 256 Кбайт для L2, разъем - Socket А. Эквивалентная производительность Athlon ХР - 2400+ или 2600+.

Однако ядро Thoroughbred рассматривать как простую переделку Palomino с учетом новых норм технологического процесса все же не совсем верно. Thoroughbred по своей внутренней структуре значительно отличается от Palomino, в чем можно убедиться по микроснимкам процессорных ядер.

  • а - Palomino.
  • б - Thoroughbred.

Процессор Sempron

Летом 2004 года AMD объявила о выходе центрального процессора семейства Sempron. Первоначально задуманный как преемник успешного центрального процессора Duron и прямой конкурент процессору Celeron D (Intel, 90 нм), диапазон применения Sempron фактически перекрыл диапазон Athlon AMD ХР и поставил фирмы, выпускающие настольные и мобильные персональные компьютеры, перед выбором - либо Sempron, либо Athlon 64.

Все первые центральные процессоры базировались на 130 нанометровой технологии AMD. Наиболее мощные образцы (3100+) выпускаются в формате интерфейса Socket 754 (Athlon 64 - в формате Socket 939). Другие участники семейства - от 2 ГГц (2800+) до 1.5 ГГц (2200+) - используют Socket А.

В дальнейшем Sempron предполагается перевести на 90 нанометровую технологию и интерфейс Socket 939.

Архитектура процессора К8

Эта архитектура используется во всех современных серверных, настольных и мобильных процессорах AMD (Opteron, Athlon 64 и Athlon 64 Х2). Первым из процессоров К8 являлся Hammer (середина 2000 года).

Одним из главных новшеств К8 является 64-разрядная архитектура х86-64 ISA. Примером 64-разрядных процессоров (IA-64) является Intel Itanium. Однако между 64-разрядными архитектурами процессоров Itanium и К8 мало общего. Itanium - процессор, несовместимый с системой команд х86, тогда как К8, напротив, таковым является.

Стратегия AMD на 64 бита (х86-64) заключается в следующем - за основу взято производительное х86-ядро и расширен набор инструкций для возможности адресации 64-битового пространства памяти. Особенности архитектуры х86-64 (AMD64):

  • обратная совместимость с инструкциями х86;
  • 8 новых 64-битовых РОН плюс 64-битовые версии прежних 8 РОН х86 (доступны лишь в 64-битовом «длинном» режиме);
  • поддержка SSE и SSE2 помимо восьми новых регистров SSE2;
  • увеличен объем адресуемой памяти для приложений, работающих с большими объемами данных (доступно лишь в «длинном» режиме);
  • высокая производительность 32-битовых приложений плюс поддержка появляющихся 64-битовых приложений, хороший вариант переходного процессора.

Таблица режимов процессоров К8

Режим Подрежим Назначение Адресуемая память, Гбайт Операционная система Примечания
«Преемственности» (Legacy Mode) Нет Работа со всеми 16- или 32-бито-выми х86-прило-жениями 4 32-раз-рядная Используются только 32 разряда в 64-разрядных регистрах. Дополнительные 64-разрядные регистры не задействованы. Перекомпиляция ПО не требуется
«Длинный» (Long Mode) Полный (64 разряда) Работа с 64-разрядными приложениями (инструкции х86-64) Более 4 64-разрядная Используются 64-разрядные основные и дополнительные регистры. Требуется перекомпиляция старых программ
Совместимости (Compatibility Mode) Запуск 32-разрядных программ в 64-разрядной операционной системы 2 в 32-битовой операционной системе. 4 в 64-битовой операционной системе Используются только 32 разряда е 64-разрядных регистрах. Дополнительные 64-разрядные регистры не задействованы. Перекомпиляция ПО не требуется

Основные недостатки:

  • процессор продолжает поддерживать архитектуру х86, которая достаточно устарела;
  • новые РОН можно использовать лишь в 64-битовом режиме, что не позволяет повысить производительность 32-битовых приложений посредством улучшения архитектуры системы команд.

Для реализации возможности работы как с 32-битовыми, так и с 64-битовыми приложениями процессоры К8 поддерживают два режима работы - Long Mode и Legacy Mode. В режиме Long Mode также предусмотрено два подрежима - 64-битовый и Compability mode (режим совместимости).

Некоторые прочие особенности К8

  • контроллер памяти интегрирован в сам процессор. Традиционно он располагается в «северном мосте» чипсета на системной плате. Собственно, контроллер памяти - это основной функциональный блок «северного моста» (в чипсетах Intel его так и называют - МСН, Memory Controller Hub); встроенный порт («линк») шины HyperTransport - универсальной шины межчипового соединения. В процессорах К8 Opteron может быть до 3-4 линков НТ, что позволяет комбинировать их в кластерные структуры

  • архитектура К8 разработана с перспективой создания многоядерных процессоров и многопроцессорных систем: если центральные процессоры Intel Хеоn может продемонстрировать лишь 11 процентов увеличения производительности при переходе к двум процессорам, то в случае с Opteron оно составляет 24 процента;
  • усовершенствован блок предсказания переходов - для увеличения точности он содержит историю 16 000 переходов, а также 2000 адресов назначения.

Исполнение инструкций на конвейере К8 начинается с блока выборки инструкций. За один такт блок выбирает из кэша 16 байт данных и выделяет из них от одной до трех инструкций х86 - сколько в выбранных данных поместилось. Поскольку средняя длина команды х86 составляет 5-6 байт, то, как правило, блоку удается выбрать три команды за такт.

На втором такте конвейера выбранные команды распределяются по трем блокам декодирования инструкций. Самые сложные команды отправляются в декодер сложных команд (VectorPath), другие - в декодеры простых команд (DirectPath).

Исходные х86-инструкции на завершающих этапах работы декодера К7/К8 переводятся в макрооперации, или МакОПы (mOPs). Большинству х86-инструкций соответствует одна МакОП, некоторые преобразуются в 2 или 3, а наиболее сложные, например деление или тригонометрические, - в последовательность из нескольких десятков МакОП. Макрооперации имеют фиксированную длину и регулярную структуру.

Условно можно считать что в определенный момент МакОп может «расщепляться» на две микрооперации (МкОП). Как правило, в К7 и в К8 МакОП содержит две МкОП - одну для АЛУ (ALU) (или блока ПЗ - FPU), другую - для УВА (устройства вычисления адреса, AGU - Address Generation Unit).

За счет конвейеризации возможны ситуации, когда одновременно в разных блоках процессора будут выполняться до двух десятков команд - и в К7, и в К8 имеется десять исполнительных устройств - три ALU, три FPU, три AGU и отдельный блок умножения.

Подобно тому, как объединение двух отдельных МкОП в одну МакОП дает явные преимущества, точно так же дела обстоят и с самими МакОП - практически везде они выступают не в виде самостоятельных единиц, а в виде группы. Группу образуют три МакОП, которые одновременно запускаются на параллельные каналы.

Вся дальнейшая работа идет не с одиночными, а с «тройками» МакОП («линиями», line). Такая «линия», с точки зрения центрального управляющего блока процессора - ICU (Instruction Control Unit) воспринимается как единое целое: все основные действия выполняются именно над «линиями», в первую очередь выделение внутренних ресурсов.

Сгенерированные «линии» от декодеров по одной за такт поступают в блок управления командами - Instructions Control Unit (ICU), где подготовленные к исполнению линии накапливаются в специальной очереди (24 линии).

Из очереди в 24 линии по три МакОП в каждой ICU выбирает в наиболее удобной для исполнения последовательности (одна-три МакОП) и пересылает их либо на АЛУ, либо на блок ПЗ в зависимости от типа микрооперации. В случае АЛУ микрооперации сразу же попадают в очередь планировщика (шесть элементов по три МакОП), который подготавливает необходимые для исполнения микрооперации ресурсы, дожидается их готовности и только потом отправляет. Причем при исполнении одной МакОП на самом деле может происходить исполнение сразу двух действий (МкОП).

Процессор Athlon 64х2

AMD снова оказалась впереди Intel, продемонстрировав действующий экспериментальный образец двухъядерного процессора летом 2004 года и поэтому Intel вызвала всеобщее удивление, все же выйдя первой на рынок с двухъядерным процессором весной 2005 года Однако, мало того, что AMD 64 Х2 был только короткое время позади Pentium Extreme Edition и Pentium D по датам выхода на рынок, он значительно опережал их по показателям эффективности.

Athlon 64 Х2 включает все возможности, заложенные в единственном ядре Athlon 64 (такие, как HyperTransport и Enhanced Virus Protection - EVP). Когда центральный процессор работает под операционной системой Windows ХР (SP2), EVP интерпретирует области системной памяти как «только данные», так что любой находящийся здесь фрагмент кода может быть либо прочитан, либо записан, но не может быть выполнен как код программы. Тем самым EVP действует как профилактическая мера против обычных злонамеренных вирусов, локализуя и обезвреживая их.

Основная архитектура ядра Х2 по существу та же, как и у Athlon 64. Различие в том, что новые чипы, размещаемые на единственном кристалле в 199 квадратных миллиметров, причем каждый содержит более чем 233 миллиона транзисторов, изготовлены по 90 нанометровой технологии AMD.

Таким образом, спецификации первоначально объявленного диапазона Athlon 64 Х2 были эквивалентны таковым из существующих центральных процессоров на 3500+, 3700+, 3800+ и 4000+ с изменением кэша L2 и тактовой частоты. Модели с 512 Кбайт кэша на ядре базируются на двойном ядре «Winchecter», в то время как версии версии кэша L2 на 1 Мбайт используют дизайн «Toledo». К лету 2005 года диапазон был расширен с появлением нового чипа (3800 +).

Athlon 64 x2 модели 5200+ позиционировался производителем как двухъядерное решение среднего уровня на базе АМ2. Именно на его примере и будет изложен порядок разгона данного семейства устройств. Запас прочности у него достаточно неплохой, и при наличии соответствующих комплектующих можно было получить вместо него чипы с индексами 6000+ или 6400+.

Смысл разгона ЦПУ

Процессор AMD Athlon 64 x2 модели 5200+ можно легко превратить в 6400+. Для этого достаточно только повысить его тактовую частоту (в этом и заключается смысл разгона). Как результат - конечная производительность системы вырастет. Но при этом увеличится и энергопотребление компьютера. Поэтому не все так просто. Большинство компонентов компьютерной системы должно иметь запас по надежности. Соответственно, материнская плата, модули памяти, блок питания и корпус должны быть более высокого качества, это значит, что и стоимость у них будет выше. Также система охлаждений ЦПУ и термопаста должны быть специально подобраны именно для процедуры разгона. А вот со штатной системой охлаждения не рекомендуется экспериментировать. Она рассчитана на стандартный тепловой пакет процессора и с увеличенной нагрузкой не справится.

Позиционирование

Характеристики процессора AMD Athlon 64 x2 явно указывают на то, что он относился к среднему сегменту двухъядерных чипов. Были и менее производительные решения - 3800+ и 4000+. Это начальный уровень. Ну а выше в иерархии находились ЦПУ с индексами 6000+ и 6400+. Первые две модели процессоров теоретически можно было разогнать и получить из них 5200+. Ну а сам 5200+ можно было модифицировать до 3200 МГц, и за счет этого получить вариацию уже 6000+ или даже 6400+. Причем технические параметры у них были практически идентичными. Единственное что могло изменяться, так это количество кэша второго уровня и технологический процесс. Как результат уровень их производительности после разгона практически не отличался. Вот и получалось, что при меньшей стоимости конечный владелец получал более производительную систему.

Технические характеристики чипа

Характеристики процессора AMD Athlon 64 x2 могут существенно отличаться. Ведь было выпущено три его модификации. Первая из них носила кодовое название Windsor F2. Работала она на тактовой частоте в 2,6 ГГц, имела 128 кбайт кэша первого уровня и, соответственно, 2 Мб второго уровня. Изготавливался этот полупроводниковый кристалл по нормам 90 нм технологического процесса, а тепловой его пакет был равен 89 Вт. При этом максимальная температура его могла достигать 70 градусов. Ну и напряжение, подаваемое на ЦПУ, могло быть равно 1,3 В или 1,35 В.

Чуть позже появился в продаже чип с кодовым названием Windsor F3. В этой модификации процессора изменилось напряжение (в этом случае оно понизилось до 1,2 В и 1,25 В соответственно), увеличилась максимальная рабочая температура до 72 градусов и уменьшился тепловой пакет до 65 Вт. В довершение к этому изменился и сам технологический процесс - с 90 нм до 65 нм.

Последний, третий вариант процессора носил кодовое название Brisbane G2. В этом случае частота была поднята на 100 МГц и составляла уже 2,7 ГГц. Напряжение могло быть равным 1,325 В, 1,35 В или 1,375 В. Максимальная рабочая температура снижалась до 68 градусов, а тепловой пакет, как и в предыдущем случае, был равен 65 Вт. Ну и сам чип изготавливался по более прогрессивному 65 нм технологическому процессу.

Сокет

Процессор AMD Athlon 64 x2 модели 5200+ устанавливался в сокет АМ2. Второе его название - сокет 940. Электрически и в отношении программного обеспечения он совместим с решениями на базе АМ2+. Соответственно, приобрести для него материнскую плату пока еще возможно. Но вот сам ЦПУ уже купить достаточно сложно. Это неудивительно: процессор появился в продаже в 2007 году. С тех пор успело уже поменяться три поколения устройств.

Подбор материнской платы

Достаточно большой набор материнских плат на базе сокета АМ2 и АМ2+ поддерживал процессор AMD Athlon 64 x2 5200. Характеристики у них были самые разнообразные. Но вот чтобы по максимуму стал возможен разгон этого полупроводникового чипа, рекомендуется обращать внимание на решения на базе чипсета 790FX или 790Х. Стоили подобные материнские платы дороже среднего. Это логично, так как возможности для разгона у них были значительно лучше. Также плата должна быть изготовлена в форм-факторе АТХ. Можно, конечно, попытаться разогнать данный чип и на решениях мини-АТХ, но плотная компоновка радиодеталей на них может привести к нежелательным последствиям: перегреву материнской платы и центрального процессора и выходу их из строя. В качестве конкретных примеров можно привести PC-AM2RD790FX от Sapphire или 790XT-G45 от MSI. Также достойной альтернативой приведенным ранее решениям может стать M2N32-SLI Deluxe от Asus на базе чипсета nForce590SLI, разработанного NVIDIA.

Система охлаждения

Разгон процессора AMD Athlon 64 x2 невозможен без качественной системы охлаждения. Тот кулер, который идет в коробочной версии данного чипа, не подходит для этих целей. Он рассчитан на фиксированную тепловую нагрузку. При увеличении производительности ЦПУ его тепловой пакет возрастает, и штатная система охлаждения уже не будет справляться. Поэтому нужно покупать более продвинутую, с улучшенными техническими характеристиками. Можно порекомендовать для этих целей использовать кулер CNPS9700LED от Zalman. При наличии его данный процессор можно смело разгонять до 3100-3200 МГц. При этом особых проблем с перегревом ЦПУ точно не будет.

Термопаста

Еще один важный компонент, который нужно учитывать перед тем, AMD Athlon 64 x2 5200 +, это термопаста. Ведь чип будет функционировать не в режиме штатной нагрузки, а в состоянии увеличенной производительности. Соответственно, к качеству термопасты выдвигаются более жесткие требования. Она должна обеспечивать улучшенный теплоотвод. Для этих целей рекомендуется заменить штатную термопасту на КПТ-8, которая отлично подойдет для условий разгона.

Корпус

Процессор AMD Athlon 64 x2 5200 будет работать с увеличенной температурой в процессе разгона. В некоторых случаях она может подниматься до 55-60 градусов. Чтобы компенсировать эту увеличенную температуру, одной качественной замены термопасты и системы охлаждения будет недостаточно. Также нужен корпус, в котором воздушные потоки могли бы хорошо циркулировать, а за счет этого обеспечивалось бы дополнительное охлаждение. То есть внутри системного блока должно быть как можно больше свободного пространства, и это бы позволило за счет конвекции обеспечить охлаждение компонентов компьютера. Еще лучше будет, если в нем будут установлены дополнительные вентиляторы.

Процесс разгона

Теперь разберемся с тем, как разогнать процессор AMD ATHLON 64 x2. Выясним это на примере модели 5200+. Алгоритм разгона ЦПУ в это случае будет таким.

  1. При включении ПК нажимаем клавишу Delete. После этого откроется синий экран БИОСа.
  2. Затем находим раздел, связанный с работой оперативной памяти, и снижаем частоту ее работы до минимума. Например, задано значение для ДДР1 333 MHz, а мы опускаем частоту до 200 MHz.
  3. Далее сохраняем внесенные изменения и загружаем операционную систему. Потом с помощью игрушки или тестовой программы (например, CPU-Z и Prime95) проверяем работоспособность ПК.
  4. Опять перезагружаем ПК и заходим в БИОС. Здесь теперь находим пункт, связанный с работой шины PCI, и фиксируем ее частоту. В этом же месте необходимо зафиксировать данный показатель для графической шины. В первом случае значение должно быть установлено в 33 MHz.
  5. Сохраняем параметры и перезагружаем ПК. Заново проверяем его работоспособность.
  6. На следующем этапе выполняется перезагрузка системы. Заново входим в БИОС. Здесь находим параметр, связанный с шиной HyperTransport, и устанавливаем частоту работы системной шины в 400 МГц. Сохраняем значения и перезагружаем ПК. После окончания загрузки ОС тестируем стабильность работы системы.
  7. Потом перезагружаем ПК и входим заново в БИОС. Здесь необходимо теперь перейти в раздел параметров процессора и увеличить частоту системной шины на 10 МГц. Сохраняем изменения и перезагружаем компьютер. Проверяем стабильность системы. Затем, постепенно повышая частоту процессора, доходим до того момента, когда он перестает стабильно работать. Далее возвращаемся к предыдущему значению и опять тестируем систему.
  8. Затем можно попытаться дополнительно разогнать чип с помощью его множителя, который должен быть в этом же разделе. При этом после каждого внесения изменений в БИОС сохраняем параметры и проверяем работоспособность системы.

Если в процессе разгона ПК начинает зависать и вернуться к предыдущим значениям невозможно, то необходимо сбросить настройки БИОСа на заводские. Для этого достаточно найти в нижней части материнской платы, рядом с батарейкой, джампер с надписью Clear CMOS и переставить его на 3 секунды с 1 и 2 контакта на 2 и 3 контакты.

Проверка стабильности системы

Не только максимальная температура процессора AMD Athlon 64 x2 может привести к нестабильной работе компьютерной системы. Причина может быть вызвана рядом дополнительных факторов. Поэтому в процессе разгона рекомендуется проводить комплексную проверку надежности работы ПК. Лучше всего для решения этой задачи подходит программа Everest. Именно с ее помощью и можно проверить надежность и стабильность работы компьютера в процессе разгона. Для этого лишь достаточно после каждых внесенных изменений и после окончания загрузки ОС запускать эту утилиту и проверять состояние аппаратных и программных ресурсов системы. Если какое-то значение выходит за допустимые границы, то нужно перезагружать компьютер и возвращаться к предыдущим параметрам, а затем заново все тестировать.

Контроль системы охлаждения

Температура процессора AMD Athlon 64 x2 зависит от работы системы охлаждения. Поэтому по окончании процедуры разгона необходимо проверить стабильность и надежность работы кулера. Для этих целей лучше всего использовать программу SpeedFAN. Она и бесплатная, и уровень ее функциональности достаточный. Скачать ее из Интернета и установить на ПК не составит особого труда. Далее ее запускаем и периодически, в течение 15-25 минут, контролируем количество оборотов кулера процессора. Если это число стабильно и не уменьшается, то все в порядке с системой охлаждения ЦПУ.

Температура чипа

Рабочая температура процессора AMD Athlon 64 x2 в штатном режиме должна изменяться в диапазоне от 35 до 50 градусов. В процессе разгона этот диапазон будет уменьшаться в сторону последнего значения. На определенном этапе температура ЦПУ может даже превысить 50 градусов, и в этом ничего страшного нет. Максимально допустимое значение - 60 ˚С, приблизившись к которому, рекомендуется прекратить какие-либо эксперименты с разгоном. Более высокое значение температуры может негативно сказаться на полупроводниковом кристалле процессора и вывести его из строя. Для проведения замеров в процессе операции рекомендуется использовать утилиту CPU-Z. Причем регистрацию температуры необходимо осуществлять после каждого внесенного изменения в БИОС. Также нужно выдержать интервал в 15-25 минут, в течении которого периодически проверять, как сильно нагрелся чип.

Введение

Первые процессоры с архитектурой AMD64 стали появляться ещё в апреля 2003 года. Это были процессоры Opteron серии 200, которые продемонстрировали довольно неплохой уровень производительность благодаря своей отличной архитектуре. Серверный рынок сам по себе имеет довольно маленький процент, от общего рынка процессоров, поэтому анонс настольных процессоров с архитектурой AMD64 для высокопроизводительных ПК не заставил себя долго ждать, так 23 сентября 2003 года были официально представлены модели: AMD Athlon 64 3200+ и AMD Athlon 64 FX-51, а затем и AMD Athlon 64 3400+. В преддверии нового года, поклонников продукции AMD также ждал сюрприз: без какого-либо ажиотажа свет увидел новый процессор Athlon 64 3000+, который направлен на массовый рынок, и о котором пойдёт речь в сегодняшнем материале.

Линейка процессоров AMD 8-го поколения

Компания AMD выпускает несколько моделей процессоров 8-го поколения, предназначенных для определённых секторов рынка.

  • Athlon 64 FX-51

Для лучшего представления и удобства восприятия материала приведём небольшую табличку в которой собраны технические характеристики вышеперечисленных процессоров.

Opteron 144

Athlon 64 FX-51

Athlon 64 3400+

Athlon 64 3200+

Athlon 64 3000+

Корпусировка

Частота

Тех.процесс

0.13 мкм, SOI

0.13 мкм, SOI

0.13 мкм, SOI

0.13 мкм, SOI

0.13 мкм, SOI

Число транзисторов

Площадь ядра

Номинальное напряжение

Контроллер памяти

Двуканальный, 128-битный

Двуканальный, 128-битный

Одноканальный, 64-битный

Одноканальный, 64-битный

Одноканальный, 64-битный

Типы памяти

Регистровая DDR400/ DDR333/ DDR266 SDRAM

DDR400/ DDR333/ DDR266 SDRAM

DDR400/ DDR333/ DDR266 SDRAM

DDR400/ DDR333/ DDR266 SDRAM

L1 кеш

128 Кбайт (по 64 Кбайта на код и данные)

128 Кбайт (по 64 Кбайта на код и данные)

128 Кбайт (по 64 Кбайта на код и данные)

128 Кбайт (по 64 Кбайта на код и данные)

L2 кеш

1024 Кбайт (эксклюзивный)

1024 Кбайт (эксклюзивный)

1024 Кбайт (эксклюзивный)

1024 Кбайт (эксклюзивный)

512 Кбайт (эксклюзивный)

Cool’n’Quiet

AMD Athlon 64 3 0 00+

Слухи о том, что AMD готовит новый процессор Athlon 64 с рейтингом 3000+, поползли по сети быстро. Большинство обозревателей, тестеров и экспертов предполагали, что новая бюджетная модель будет отличатся лишь тактовой частотой. Сомнений ни у кого не осталось, что может быть иначе, особенно, если посмотреть на модельный ряд мобильных процессоров Athlon 64, так модель с рейтингом 3200+ имеет частоту 2000 Мгц, а 3000+ - 1800 Мгц. Официальный релиз компании расставил все точки над I. Новый настольный процессор AMD Athlon 64 3000+ имеет такую же тактовую частоту, что и более дорогая модель с рейтингом 3200+. Изменения коснулись кэш-памяти второго уровня, объём которой у Athlon 64 3000+ уменьшился, по сравнению с Athlon 64 3200+,вдвое и составил 512 Кбайт против 1 Мбайта у модели 3200+. Вашему вниманию мы представляем скриншот из программы CPU-Z.

Такое решение компании AMD имеет логическое объяснение. Процессоры семейства Athlon 64 имеют довольно большую площадь кристалла, что делает их производство довольно дорогим т.к. количество брака достаточно велико. Большой процент брака приходится именно на кеш-память, по причине того, что последняя занимает 50% площади кристалла. Таким образом, компания AMD уже в не первый раз пытается убить двух зайцев одним выстрелом, вспомним ситуацию с ядрами Barton и Thorton. Таким образом, компании удалось:

Теоретически, исходя из ситуации сложившийся с Barton и Thorton, а также с Pentium 4 и Pentium 4 Extreme Edition, можно предположить, что производительность у Athlon 64 3000+, в сравнении с Athlon 64 3200+, упадёт не сильно. Само по себе снижение или увеличение объёма кэш-памяти не даёт значительного снижение или увеличения производительности, яркими тому примерами являются процессоры AMD Athlon на ядрах Barton и Thorton, а также процессоры Pentium 4 и Pentium 4 Extreme Edition. Но теория теорией, а практика практикой, поэтому отложим наши выводы до объективного тестирования.

AMD Athlon 64 3000+ также как и старшие модели, поддерживает технологию Cool’n’Quiet – интеллектуальная технология понижения тепловыделение. По сути Cool’n’Quiet является усовершенствованной технологией PowerNow!, которая уже большое количество времени используется в “мобильных” процессорах от AMD. Принцип работы технологии достаточно простой: посредством драйвера, который сбрасывает или повышает тактовую частоту процессора, определяется степень загрузки центрального процессора, и в соответствии с полученными данными, оптимизируется рабочая частота процессора и соответственно напряжение на процессоре. Здесь можно представить вполне логичную ситуацию: пользователь работает Word, соответственно степень загрузки процессора незначительна, драйвер снижает рабочую частоту и напряжение на ядре процессора. Ситуация кардинально меняется, если вы запускаете современную компьютерную игру или другое ресурсоёмкое приложение. Опять же драйвер определяет степень загрузки, которая стала максимальной, после чего увеличивается рабочая частота процессора и соответственно напряжения на ядре процессора.

Давайте от теории перейдём к практике. При запуске обычных офисных приложений, тактовая частота процессора снизилась до 800 Мгц, а напряжение на ядре – до 1.3В. Также стоит отметить, что снижение рабочей частоты процессора, происходит за счёт изменения множителя, так в нашем случаи, при частоте в 800 Мгц, множитель составил 4х.

После того, как нагрузка на процессор увеличивается, рабочая точка меняется и процессор работает на частоте 1800 Мгц, а напряжение и множитель составляет 1,4В и 9х соответственно.

Помимо этого процессоры AMD Athlon 64 могут переходить в так называемый “ждущий режим” (Halt/Stop Grant).

Для удобства представления рабочих точек и количества тепловыделения на той или иной рабочей частоте приведём небольшую таблицу.

Коробка, кулер, наклейка…

Процессор AMD Athlon 64 3000+ попал на тестирование в боксовом варианте. В коробке небольших размеров помимо Athlon 64 3000+ ещё находились: кулер, устройство для крепления CPU к материнской плате и наклейка с логотипом процессора.

Стоит сказать несколько о кулере, идущим в комплекте с процессорами AMD Athlon 64. Кулер имеет основание из сплава с большим процентом содержанием меди, к которому прикреплено большое количество тонких ребёр. Вентилятор, на двух шарикоподшипниках со встроенным температурным датчиком, имеет скорость вращения 3050 об/мин - 6000 об/мин (варьируется в зависимости от температуры процессора, порогом является 42 градуса по Цельсию (ниже 42 - 3050 об/мин, выше 42 - <=6000 об/мин). Уровень шума не высок: субъективно он значительно ниже нежели у кулеров, поставляемых с процессорами Intel Pentium 4.

Тестирование

Тестовые испытания проводились на тестовом стенде следующей конфигурации:

    Материнские платы: MicroStar K8T Neo (VIA K8T800) и ASUS P4C800 Deluxe (Intel 875P)

    Процессор: AMD Athlon 64 3000+ и Intel Pentium 4 3000 Мгц (800 Мгц FSB, Northwood)

    Память: 2x256 Мбайт PC3200 Hynix DDR SDRAM CL 2.0

    Видеокарта: ASUS V9560 Ultra (NVIDIA GeForce FX 5600 Ultra)

    Жёсткий диск: Seagate Barracuda 7, 80 Гбайт

Конечно же было бы неплохо сравнить производительность AMD Athlon 64 3000+ с другими процессорами из линейки Athlon 64, но этой возможности нет по причине отсутствия таковых процессоров. Поэтому пришлось ограничится сравнением AMD Athlon 64 3000+ с его главным конкурентом Intel Pentium 4 3000 Мгц.

На тестовом стенде были установлены операционная система Microsoft Windows XP Service Pack 1, а также тестовые программы и реальные игровые приложения:

Тайминги памяти на обеих платах были выставлены как 2.0/5/3/3.

Синтетические тесты 3DMark 2001 SE и 3DMark 2003, а также игровой бенчмарк GunMetal BenchMark использовали максимальную детализацию, разрешение 640х480 и 32-х битный цвет.

При архивации данных использовались архиватор WinRAR 3.20 и папка с данными (PCBench) из тестового пакета ZD Winstone 2004. Данная папка была выбрана, потому что она имеет большой размер и в ней содержатся практически все типы файлов.

Тесты на сжатия видео проводились при помощи программы VirtualDub 1.5.1 и кодека DivX codec 5.05a Pro. Сжимаемый видеофайл имел размер 74,5 мегабайта.

Тесты на кодирование Mp3 проводились при помощи кодера RazorLame 1.1.5.1342 и кодека Lame codec 3.93.1. Файла в формате Wave, а именно програбленный альбом “Master Of Puppets” группы Metallica сжимался в Mp3-файлы с битрейтом 128 кб/с и частотой дискретизации 41 КГц.

Реальные игровые приложения использовали 32-х битный цвет и разрешение 800x600. VSync отключался. Компрессия текстур отключалась непосредственно в игровых приложениях. Все игровые приложения настраивались на максимальную детализацию.

С каждой новой тестируемой платой, заново устанавливались операционные системы и все тестовые приложения.

Результаты тестирования

Тестовые приложения

AMD Athlon 64 3000+

Intel Pentium 4 3000 Мгц

Превосходство/отстование AMD Athlon 64 3000+ (%)

Business Winstone 2004

Content Creation Winstone 2004

SiSoftware Sandra 2003, CPU BenchMark, Dhrystone ALU, MIPS

SiSoftware Sandra 2003, CPU BenchMark, Whetstone FPU, MPFLOPS

SiSoftware Sandra 2003, Memory BenchMark, Int, MB/s

SiSoftware Sandra 2003, Memory BenchMark, Floaut, MB/s

PCMark 2004, Score

PCMark 2004, CPU score

PCMark 2004, Memory Score

PCMark2004, File Compression, MB/s

PCMark2004, File Encryption, MB/s

PCMark2004, File Decompression, MB/s

PCMark2004, Image Processing, MPixels/s

PCMark2004, Virus Scanning, MB/s

PCMark2004, Grammar Check, KB/s

PCMark2004, File Decryption, MB/s

PCMark2004, Audio Conversion, KB/s

PCMark2004, WMV Video Compression, fps

PCMark2004, DivX Video Compression, fps

PCMark2004, Physics Calculation and 3D, fps

PCMark2004, Graphics Memory - 64 Lines, fps

Архивация: WinRAR 3.11, seconds

Кодирование видео: VirtualDub 1.5.1 + DivX codec 5.05a Pro, seconds

Кодирование звука MP3: RazorLame 1.1.5.1342 + Lame codec 3.93.1, seconds

CINEMA 4D, CINEBENCH 2003

Hardware Lighting Test, Scene 1, fps

Hardware Lighting Test, Scene 2, fps

Software Lighting Test, Scene 1, fps

Shading Test, Scene 1, fps

Shading Test, Scene 2, fps

Single CPU Render Test, sec

800x600x32

Unreal Tournament 2003 (Direct3D), fps

Return to Castle Wolfenstein (OpenGL), fps

Serious Sam 2 The Second Encounter (OpenGL), fps

Quake3 Arena (OpenGL), fps

Unreal II: The Awakening (Direct3D), fps

Comanche 4 (Direct3D), fps

Tomb Raider - Angel Of Darkness (Direct3D), Demo: Paris3c, fps

HALO: Combat Evolved 1.2 (Direct3D), fps

X2: The Threat Demo (Direct3D), fps

Call of Duty (OpenGL), fps

AquaMark 3 (Direct3D), Default, fps

AquaMark 3 (Direct3D), Default, CPU, fps

GunMetal BenchMark 1 (Direct3D), 640x480x32, fps

GunMetal BenchMark 2 (Direct3D), 640x480x32, fps

Тестовые приложения

AMD Athlon 64 3000+

Intel Pentium 4 3000 Мгц

Intel Pentium 4 3000 Мгц

Производительность в офисных и мультимедиа приложениях

В тестовом пакете ZD Winstone 2004 производительность системы на Athlon 64 выше, нежели производительность системы, в основу которой лёг микропроцессор Intel Pentium 4.

Производительность в синтетических тестах

Бенчмарк микропроцессора из тестового пакета Sandra 2003 говорит о отставании микропроцессора AMD от продукта Intel. Однако не стоит принимать результаты этого теста близко к сердцу: общеизвестный факт, что тестовый пакет SiSoftware Sandra очень уже лояльно относится к продуктам Intel.

Тесты памяти демонстрируют нам аналогичную картину.

Результаты PCMark 2004 говорят о полном разгроме Athlon 64 3000+. Результаты получились действительно разгромные, а в мозге закралась мыслишка о оптимизации этого теста под архитектуру микропроцессора Pentium 4. Попробуем разобраться в сложившийся ситуации, для этого давайте посмотрим на подробные результаты тестов из пакета PCMark 2004. Первые шесть тестов запускают по два вычислительных потока синхронно, а здесь технология Hyper-Threading делает своё дело.

Остальные тесты, в основном, относятся к задачам кодирования, а с этим, действительно, лучше справляется Intel Pentium 4. Athlon 64 выигрывает лишь в тестах проверки грамматики и физического моделирования.

Полусинтетический пакет 3DMark 2001SE показывает превосходство AMD Athlon 64 3000+. Результаты же 3DMark 2003 говорят о практически идентичной производительности обоих процессоров, что говорит о том, что данный тестовый пакет очень сильно зависит от производительности видеоподсистемы.

Производительность в тестах на сжатие данных, кодирование/декодирование аудио и видео

Архивация данных критична к производительности подсистемы памяти и как мы видим, подсистема памяти у платформы на Athlon 64 организована лучше.

В кодировании видео, производительность контроллера памяти также играет не последнюю роль, и мы видим идентичную незначительное отставание Athlon 64.

А вот кодирование Mp3 напротив: относится к подсистеме памяти очень даже лояльно, но категорично – к производительности центрального процессора, и как мы видим здесь побеждает процессор Intel Pentium 4 3000 Мгц с довольно большим отрывом.

Производительность в профессиональных приложениях

С профессиональными задачами как мы видим, лучше справляется AMD Athlon 64.

Производительность в реальных игровых приложениях

В компьютерных играх AMD Athlon 64 3000+ показывает себя с наилучшей стороны: практически во всех приложениях, Athlon 64 показал большую производительность нежели Pentium 4. Исключение составляют игровые приложения в основу которых лёг движок или модифицированная версия движка Quake 3 Arena, как известна последний намного лучше обрабатывается системами с процессорами Intel Pentium 4.

Производительность в полусинтетических псевдо DirectX 9 бенчмарках

Опять же, мы наблюдаем превосходство платформы, построенной на базе микропроцессора AMD Athlon 64 3000+.

Выводы

У компании AMD получился отличный продукт. Процессор AMD Athlon 64 3000+ обладает отличной производительность за частую более высокой чем у главного конкурента Intel Pentium 4 3000 Мгц. Об абсолютном превосходстве Athlon 64 3000+ говорит не приходится, по причине того, что процессор хорош не во всех тестах, так например в задачам кодирования и тестах с двумя вычислительными потоками побеждает Intel Pentium 4. И тем не менее, учитывая то, что на данный момент нет 64-х битной ОС Windows XP и 64-х битных приложений, AMD представила замечательный продукт у которого несомненно будет успех, учитывая его официальную (в прайсе AMD) цену в 212 у.е. По этой цене конкурент в лице компании Intel может предложить лишь микропроцессор Intel Pentium 2800 Мгц. Однако давайте посмотрим на наши Минские цены: AMD Athlon 64 3000+ стоит у нас порядка 275-280 у.е, а что за эту цену можно купить от Intel? Лишь Intel Pentium 4 2800 Мгц. А если учесть цены на материнские платы на VIA K8T800 и на платы, в основу которых лёг Intel 875P… По-моему далее лишние слова излишни…

Автор выражает благодарность компании GreenLine – официальному дистрибьютору продукции MSI на территории РБ за предоставленные для тестирования центральный процессор AMD Athlon 64 3000+ и системную плату MicroStar K8T Neo

Собираем системник из говна и палок по минимальному бюджету.
Планируемая нагрузка - комфортный сёрфинг в сети, видео 720p, 2D игры (или 3D из прошлого десятилетия). Эпизод первый - центральный процессор.
Выбор сокета процессора был обусловлен наличием , которую мне удалось приобрести в офф-лайне по сходной цене. И хотя предполагаемая нагрузка на ПК по современным меркам более чем скромная, но подсознательно хотелось получить хоть какую-нибудь производительность. Тем более если учитывать мизерный . Поэтому я и остановил свой выбор на данном лоте - два ядра по 2,6 ГГц как нельзя лучше подходили для решения поставленных задач. Особенно с оглядкой на ценник.
Доставка заняла полтора месяца; по видимому сказались новогодние праздники. Но трек отслеживался и никаких беспокойств не было.
По упаковке претензий нет, всё надёжно и крепко. Содержимое посылки не пострадало.


Если откинуть всё лишнее, то непосредственно сам процессор поставляется в пластиковом блистере, что по видимому и сохраняет в целости его ноги)
Так же в комплекте присутствует пакетик смегмы каменного тролля тепмопасты. Что ж, приятный бонус. За неимением лучшего процессор хотя бы готов к работе «из коробки».


Мелко-царапки на корпусе

На первый взгляд всё ОК.


Хотя, если поиграть солнечным зайчиком, то мелко- царапинки всё-же найти можно. Ничего удивительного. Процессор-то бу-шный.


Ноги тоже в порядке, кардабалет ровный.



Протираем спиртом и устанавливаем на место


Не забываем про термоинтерфейс и запускаем систему. Материнская плата корректно распознаёт установленный процессор. Никаких обновлений BIOS не требуется. Ещё бы, ведь комплектующие родом из одной эпохи. Да они вообще как старые друзья встретились. (Полосы на мониторе - это косяк монитора. К обозреваемому процессору никакого отношения не имеют)


CPU-Z показал по этому поводу приблизительно следующее


А CPU-Z тесты:
в одно лицо - 227 попугаев
на двоих - 431


Стресс-тест разогревает процессор аж 60-65°C. Да уж, вообще не холодный. Однако здесь стоит учесть, что «сердцем» системы охлаждения является самый простой алюминиевый радиатор. Для лёгких вычислительных задач этого хватает. Но я нормально отдаю себе отчёт, что это работа на пределе возможностей СО и этот узел требует скорейшего апгрейда.


Бенчмарк PerformanceTest с точки зрения производительности центрального процессора оценил мой выбор в 941 попугай. И почему-то сравнил с производительностью шести топовых процессоров. Видимо намекая на то, что апгрейда требует не только система охлаждения).


Ну а бенчмарк встроенный в операционную систему Windows центральному процессору дал оценку в 5,9 балла из 9,9 возможных.

Если оценить общефункциональную производительность ПК, то с моими скромными задачами эта сборка справляется без тормозов и лагов. (Однако стоит упомянуть, что в качестве системного диска установлен SSD, хоть и sata 2… но на быстродействии и производительности это точно сказывается позитивно).

Сложно сделать однозначный вывод по ситуации, ведь железо морально старое, однако ещё трудоспособное. И для кого-то подобный процессор будет спасением, а для кого-то - брелоком.

Теперь прощаюсь Быть добру!

Планирую купить +30 Добавить в избранное Обзор понравился +60 +101

Лучшие статьи по теме