Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Новости
  • Аналитическое выражение закона ома. Закон Ома для полной цепи: история и формулы

Аналитическое выражение закона ома. Закон Ома для полной цепи: история и формулы

Физический закон , определяющий связь (или электрического напряжения) с силой тока , протекающего в проводнике , и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.

Закон Ома для переменного тока

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига .

Если ток является синусоидальным с циклической частотой ω {\displaystyle \omega } , а цепь содержит не только активные, но и реактивные компоненты (ёмкости , индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

U = I ⋅ Z {\displaystyle \mathbb {U} =\mathbb {I} \cdot Z}
  • U = U 0 e i ωt - напряжение или разность потенциалов,
  • I - сила тока,
  • Z = Re i δ - комплексное сопротивление (электрический импеданс),
  • R = R a 2 + R r 2 - полное сопротивление,
  • R r = ωL − 1/(ωC ) - реактивное сопротивление (разность индуктивного и емкостного),
  • R а - активное (омическое) сопротивление, не зависящее от частоты,
  • δ = − arctg (R r /R a ) - сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U = U 0 sin ⁡ (ω t + φ) {\displaystyle U=U_{0}\sin(\omega t+\varphi)} подбором такой U = U 0 e i (ω t + φ) , {\displaystyle \mathbb {U} =U_{0}e^{i(\omega t+\varphi)},} что Im ⁡ U = U . {\displaystyle \operatorname {Im} \mathbb {U} =U.} Тогда все значения токов и напряжений в схеме надо считать как F = Im ⁡ F {\displaystyle F=\operatorname {Im} \mathbb {F} }

Л юбая электрическая цепь обязательно содержит в себе источник электрической энергии и ее приемник. В качестве примера рассмотрим простейшую электрическую цепь, состоящую из батарейки и лампочки накаливания.

Батарейка - это источник электрической энергии, лампочка - ее приемник. Между полюсами источника электроэнергии имеется разность потенциалов(+ и -), при замыкании цепи начинается процесс ее выравнивания под действием электродвижущей силы, сокращенно - ЭДС. По цепи протекает электрический ток, совершая работу - нагревая спираль эл.лампочки, спираль начинает светиться.

Таким образом происходит преобразование электрической энергии в энергию тепловую и энергию света.
Электрический ток(J) представляет из себя упорядоченное движение заряженных частиц, в данном случае - электронов.
Электроны имеют отрицательный заряд, и по этому, их движение направлено к положительному(+) полюсу источника питания.

При этом, всегда образуется электромагнитное поле, распостраняясь от (+) к (-) источника(навстречу движению электронов) через электрическую цепь со скоростью света. Традиционно, принято считать, что электрический ток(J) движется от положительного(+) полюса к отрицательному(-).

Упорядоченное движение электронов, через кристаллическую решетку вещества, являющегося проводником не проходит беспрепятственно. Электроны взаимодействуют с атомами вещества, вызывая его нагрев. Таким образом, вещество оказывает сопротивление (R), протекающему через него, электрическому току. И чем больше величина сопротивления, при той же величине тока - тем сильнее нагрев.

Электрическое сопротивление - это величина, характеризующая противодействие электрической цепи (или её участка) электрическому току, измеряется в омах . Электрическое напряжение (U)- величина разности потенциалов источника электрического тока. Электрическое напряжение (U), электрическое сопротивление (R),электрический ток (J) - это основные свойства простейшей электрической цепи, между собой они находятся в определенной зависимости.

Напряжение.
Сопротивление.
Сила тока.
Мощность.

С помощью калькулятора Закона Ома, расположенного выше, можно легко вычислить значения силы тока, напряжения и сопротивления любого приемника электрической энергии. Так же, подставляя значения напряжения и тока, можно определить его мощность, и наоборот.

Например, необходимо узнать ток потребляемый эл. чайником, мощностью 2,2квт.
В графу "Напряжение" подставляем значение напряжения нашей сети в вольтах - 220.
В графу "Мощность", соответственно, вводим значение мощности в ваттах 2200 (2.2квт) Нажимаем кнопку "Узнать силу тока" - получаем результат в амперах - 10. Если далее нажать кнопку "Сопротивление" , можно узнать, в добавок и электрическое сопротивление нашего чайника, во время его работы - 22 ома.

С помощью расположенного выше калькулятора, можно легко расчитать величину общего сопротивления для двух сопротивлений, подключенных параллельно.

Второй закон Кирхгофа гласит: в замкнутой электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на отдельных участках цепи. Согласно этому закону для схемы изображенной на рисунке ниже можно записать:

R об =R 1 +R 2

Т. е. при последовательном соединении элементов цепи общее сопротивление цепи равно сумме сопротивлений составляющих ее элементов, а напряжение распределяется между ними, пропорционально сопротивлению каждого.
Например, в новогодней гирлянде состоящей из 100 маленьких одинаковых лампочек, каждая из которых рассчитана на напряжение 2,5 вольт, включенной в сеть напряжением 220 вольт, на каждую лампочку будет приходиться 220/100=2,2 вольта.
И, конечно же, при таком раскладе она будет работать долго и счастливо.

Переменный ток.

Переменный ток в отличии от постоянного, не имеет постоянного направления. Например, в обычной бытовой эл. сети 220 вольт 50 герц, плюс с минусом меняются местами 50 раз в секунду. Законы Ома и Кирхгофа для цепи постоянного, тока применимы так же для цепей тока переменного, но только для электрических приемников обладающих активным сопротивлением в чистом виде, т. е. таких, как различные нагревательные элементы и лампочки накаливания.

Причем, все расчеты производятся с действующими значениями тока и напряжения. Действующее значение силы переменного тока численно равно эквивалентной по тепловому действию силе постоянного тока. Действующее значение Jперем.= 0,707*Jпост. Действующее значение Uперем.= 0,707*Uпост. Например в нашей домашней сети действующее значение переменного напряжения - 220 вольт, а максимальное (амплитудное) его значение = 220*(1 / 0,707) = 310 вольт.

Роль законов Ома и Кирхгофа, в повседневной жизни электрика.

Осуществляя свою трудовую деятельность, электрик (абсолютно любой и каждый), ежедневно сталкивается со следствиями этих фундаментальных законов и правил, можно сказать - живет в их реальности. Использует ли он теоретические знания, с большим трудом полученные в различных учебных заведениях, для выполнения повседневных трудовых обязанностей?
Как правило - нет! Чаще всего, просто - напросто, в отсутствии какой либо необходимости, это делать.

Ибо повседневная работа нормального электрика, состоит вовсе не из умственных вычислений, а наоборот - из четких, отточенных годами, физических действий. Нельзя сказать, что думать вовсе не приходиться. Совсем наоборот - ведь последствия необдуманных действий в этой профессии, обходятся порой, весьма дорого.

Иногда, встречаются среди электриков конструктора - любители, они же, чаще всего - рационализаторы. Эти люди, время от времени, используют имеющиеся у них теоретические знания с пользой для дела, разрабатывая и конструируя разнообразные устройства, как в личных целях, так и во благо родного производства. Без знания законов Ома и Кирхгофа, расчеты электрических цепей, составляющих схему будущего устройства совершенно невозможны.

В целом, можно сказать, что законы Ома и Кирхгофа являются в большей степени "инструментом" инженера - конструктора, нежели электромонтера.


Соединенный проводами с различными электроприборами и потребителями электри-ческой энергии, образует электрическую цепь.

Электрическую цепь принято изображать с помощью схем, в которых элементы электрической цепи (сопротивления , источники тока, включатели, лампы, при-боры и т. д.) обозначены специальными значками.

Направление тока в цепи — это направление от положи-тельного полюса источника тока к отрицательному. Это пра-вило было установлено в XIX в. и с тех пор соблюдается. Перемещение реальных зарядов может не совпадать с ус-ловным направлением тока. Так, в металлах носителями тока являются отрицательно заряжен-ные электроны, и движутся они от отрицательного полюса к положительному, т. е. в обратном направлении. В электролитах реальное перемещение зарядов может совпадать или быть противоположным направлению тока, в зависимости от того, какие ионы являются носителями заря-да — положительные или отрицательные.

Включение элементов в электрическую цепь может быть последовательным или параллельным .

Закон Ома для полной цепи.

Рассмотрим электрическую цепь, состоящую из источника тока и ре-зистора R .

Закон Ома для полной цепи устанавливает связь между силой тока в цепи, ЭДС и полным сопротивлением цепи, состоя-щим из внешнего сопротивления R и внутреннего сопротивления источ-ника тока r .

Работа сторонних сил A ст источника тока, согласно определению ЭДС (ɛ ) равна A ст = ɛq , где q — заряд , перемещенный ЭДС. Согласно определе-нию тока q = It , где t — время, в течение которого переносился заряд. Отсюда имеем:

A ст = ɛ It .

Тепло, выделяемое при совершении работы в цепи, согласно закону Джоуля — Ленца , равно:

Q = I 2 Rt + I 2 rt .

Согласно закону сохранения энергии А = Q . Приравнивая (A ст = ɛ It ) и (Q = I 2 Rt + I 2 rt ), получим:

ɛ = IR + Ir.

Закон Ома для замкнутой цепи обычно записывается в виде:

.

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Если цепь содержит несколько последовательно соединенных ис-точников с ЭДС ɛ 1 , ɛ 2 , ɛ 3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных источников. Знак ЭДС источника определяется по отношению к направлению обхода контура, который выбирается произвольно, например, на рисунке ниже — против часовой стрелки.

Сторонние силы внутри источника совершают при этом по-ложительную работу . И наоборот, для цепи справедливо следующее уравнение:

ɛ = ɛ 1 + ɛ 2 + ɛ 3 = | ɛ 1 | - | ɛ 2 | -| ɛ 3 | .

В соответствии с сила тока положительна при положительной ЭДС — направление тока во внешней цепи совпадает с направлением обхода контура. Полное сопротивление цепи с несколькими источниками равно сумме внешнего и внутренних сопротивлений всех источников ЭДС, например, для рисунка выше:

R n = R + r 1 + r 2 + r 3 .

Реферат

Закон Ома. История открытия. Различные виды закона Ома.

1. Общий вид закона Ома.

2. История открытия закона Ома, краткая биография ученого.

3. Виды законов Ома.

Закон Ома устанавливает зависи­мость между силой тока I в проводнике и разностью потенциалов (напряже­нием) U между двумя фиксированными точками (сечениями) этого проводника:

(1) Коэффициент пропорциональности R , завися­щий от геометрических и электрических свойств проводника и от температуры, называется омическим сопротивлением или просто сопротивлением данного участка проводника. Закон Ома был от­крыт в 1826 нем. физиком Г. Омом.

Георг Симон Ом родился 16 марта 1787 года в Эрлангене, в семье потомственного слесаря. После окончания школы Георг поступил в городскую гимназию. Гимназия Эрлангена курировалась университетом. Занятия в гимназии вели четыре профессора. Георг, закончив гимназию, весной 1805 года приступил к изучению математики, физики и философии на философском факультете Эрлангенского университета.

Проучившись три семестра, он принял приглашение занять место учителя математики в частной школе швейцарского городка Готтштадта.

В 1811 году он возвращается в Эрланген, заканчивает университет и получает степень доктора философии. Сразу же по окончании университета ему была предложена должность приват-доцента кафедры математики этого же университета.

В 1812 году Ом был назначен учителем математики и физики школы в Бамберге. В 1817 году он публикует свою первую печатную работу, посвященную методике преподавания "Наиболее оптимальный вариант преподавания геометрии в подготовительных классах". Ом занялся исследованиями электричества. В основу своего электроизмерительного прибора Ом заложил конструкцию крутильных весов Кулона. Результаты своих исследований Ом оформил в виде статьи под названием "Предварительное сообщение о законе, по которому металлы проводят контактное электричество". Статья была опубликована в 1825 году в "Журнале физики и химии", издаваемом Швейггером. Однако выражение, найденное и опубликованное Омом, оказалось неверным, что стало одной из причин его длительного непризнания. Приняв все меры предосторожности, заранее устранив все предполагаемые источники ошибок, Ом приступил к новым измерениям.

Появляется в свет его знаменитая статья "Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата и мультипликатора Швейггера", вышедшая в 1826 году в "Журнале физики и химии".

В мае 1827 года "Теоретические исследования электрических цепей" объемом в 245 страниц, в которых содержались теперь уже теоретические рассуждения Ома по электрическим цепям. В этой работе ученый предложил характеризовать электрические свойства проводника его сопротивлением и ввел этот термин в научный обиход. Ом нашел более простую формулу для закона участка электрической цепи, не содержащего ЭДС: "Величина тока в гальванической цепи прямо пропорциональна сумме всех напряжений и обратно пропорциональна сумме приведенных длин. При этом общая приведенная длина определяется как сумма всех отдельных приведенных длин для однородных участков, имеющих различную проводимость и различное поперечное сечение".

В 1829 году появляется его статья "Экспериментальное исследование работы электромагнитного мультипликатора", в которой были заложены основы теории электроизмерительных приборов. Здесь же Ом предложил единицу сопротивления, в качестве которой он выбрал сопротивление медной проволоки длиной 1 фут и поперечным сечением в 1 квадратную линию.

В 1830 году появляется новое исследование Ома "Попытка создания приближенной теории униполярной проводимости".

Только в 1841 году работа Ома была переведена на английский язык, в 1847 году - на итальянский, в 1860 году - на французский.

16 февраля 1833 года, через семь лет после выхода из печати статьи, в которой было опубликовано его открытие, Ому предложили место профессора физики во вновь организованной политехнической школе Нюрнберга. Ученый приступает к исследованиям в области акустики. Результаты своих акустических исследований Ом сформулировал в виде закона, получившего впоследствии название акустического закона Ома.

Раньше всех из зарубежных ученых закон Ома признали русские физики Ленц и Якоби. Они помогли и его международному признанию. При участии русских физиков, 5 мая 1842 года Лондонское Королевское общество наградило Ома золотой медалью и избрало своим членом.

В 1845 году его избирают действительным членом Баварской академии наук. В 1849 году ученого приглашают в Мюнхенский университет на должность экстраординарного профессора. В этом же году он назначается хранителем государственного собрания физико-математических приборов с одновременным чтением лекций по физике и математике. В 1852 году Ом получил должность ординарного профессора. Ом скончался 6 июля 1854 года. В 1881 году на электротехническом съезде в Париже ученые единогласно утвердили название единицы сопротивления - 1 Ом.

В общем случае зависимость между I и U нелинейна, однако на практике всегда можно в определенном интервале напряжений считать её линейной и применять закон Ома; для металлов и их сплавов этот интервал практически неограничен.

Закон Ома в форме (1) справедлив для участков цепи, не содержащих источ­ников ЭДС. При наличии таких источников (аккумуляторов, термопар, ге­нераторов и т. д.) закон Ома имеет вид:

(2) - ЭДС всех источников, вклю­чённых в рассматриваемый участок цепи. Для замкнутой цепи закон Ома при­нимает вид: (3) - полное сопротивление цепи, равное сумме внешнего сопротив­ления r и внутреннего сопротивления источника ЭДС. Обобщением закона Ома на случай разветвлённой цепи является правило 2-е Кирхгофа.

Закон Ома можно записать в дифференциальной форме, связывающей в каждой точке проводника плотность тока j с полной напряжённостью электрического поля. Потенциальное. электрическое поле напряжённости Е , создаваемое в проводниках микроскопическими зарядами (электронами, ионами) самих проводников, не может поддерживать стационарное движение свободных зарядов (ток), т. к. работа этого поля на замкнутом пути равна нулю. Ток поддерживается неэлектростатическими силами различного происхождения (индукционного, химического, теплового и т.д.), которые действуют в источниках ЭДС и которые можно представить в виде некоторого эквивалентного непотенциального поля с напряженностью E СТ, называемого сторонним. Полная напряженность поля, действующего внутри проводника на заряды, в общем случае равна E + E СТ . Соответственно, дифференциальный закон Ома имеет вид:

или , (4) - удельное сопротивление материала проводника, а - его удельная электропроводность.

Закон Ома в комплексной форме справедлив также для синусоидальных квазистационарных токов.

Электрический ток и опасное напряжение невозможно услышать (за исключением гудящих высоковольтных линий и электроустановок). Токоведущие части, находящиеся под напряжением, ничем не отличаются по внешнему виду.

Невозможно узнать их и по запаху, и повышенной температурой в штатных режимах работы они не отличаются. Но включаем в безмолвную и тихую розетку пылесос, щелкаем выключателем - и энергия словно берется из ниоткуда, сама по себе, материализуясь в виде шума и компрессии внутри бытового прибора.

Опять же, если мы воткнем в разъемы розетки два гвоздя и возьмемся за них, то буквально всем своим телом ощутим реальность и объективность существования электрического тока. Делать это, конечно, настоятельно не рекомендуется. Но примеры с пылесосом и гвоздями наглядно демонстрируют нам, что изучение и понимание основных законов электротехники способствует безопасности при обращении с бытовым электричеством, а также устранению суеверных предубеждений, связанных с электрическим током и напряжением.

Итак, рассмотрим один, самый ценный закон электротехники, который полезно знать. И попытаемся сделать это в как можно более популярной форме.

Закон Ома

1. Дифференциальная форма записи закона Ома

Самый главный закон электротехники - это, конечно, закон Ома . О его существовании знают даже люди, не имеющие отношения к электротехнике. Но между тем вопрос «А знаешь ли ты закон Ома?» в технических ВУЗах является ловушкой для зарвавшихся и самонадеянных школяров. Товарищ, разумеется, отвечает, что закон Ома знает отлично, и тогда к нему обращаются с просьбой привести этот закон в дифференциальной форме. Тут-то и выясняется, что школяру или первокурснику еще учиться и учиться.

Однако дифференциальная форма записи закона Ома на практике почти неприменима. Она отражает зависимость между плотностью тока и напряженностью поля:

где G - это проводимость цепи; Е - напряженность электрического тока.

Все это - попытки выразить электрический ток, принимая во внимание только физические свойства материала проводника, без учета его геометрических параметров (длина, диаметр и тому подобное). Дифференциальная форма записи закона Ома - это чистая теория, знание ее в быту совершенно не требуется.

2. Интегральная форма записи закона Ома для участка цепи

Иное дело - интегральная форма записи. Она тоже имеет несколько разновидностей. Самой популярной из них является закон Ома для участка цепи: I=U/R

Говоря по-другому, ток в участке цепи всегда тем выше, чем больше приложенное к этому участку напряжение и чем меньше сопротивление этого участка.

Вот этот «вид» закона Ома просто обязателен к запоминанию для всех, кому хоть иногда приходится иметь дело с электричеством. Благо, и зависимость-то совсем простая. Ведь напряжение в сети можно считать неизменным. Для розетки оно равно 220 вольт. Поэтому получается, что ток в цепи зависит только от сопротивления цепи, подключаемой к розетке. Отсюда простая мораль: за этим сопротивлением надо следить.

Короткие замыкания, которые у всех на слуху, случаются именно по причине низкого сопротивления внешней цепи. Предположим, что из-за неправильного соединения проводов в ответвительной коробке фазный и нулевой провода оказались напрямую соединены между собой. Тогда сопротивление участка цепи резко снизится практически до нуля, а ток так же резко возрастет до очень большой величины. Если электропроводка выполнена правильно, то сработает автоматический выключатель, а если его нет, или он неисправен или подобран неправильно, то провод не справится с возросшим током, нагреется, расплавится и, возможно, вызовет пожар.

Но бывает, что приборы, включенные в розетку и отработавшие уже далеко не один час, становятся причиной короткого замыкания. Типичный случай - вентилятор, обмотки двигателя которого подверглись перегреву из-за заклинивания лопастей. Изоляция обмоток двигателя не рассчитана на серьезный нагрев, она быстро приходит в негодность. В результате появляются межвитковые короткие замыкания, которые снижают сопротивление и, в соответствии с законом Ома, также ведут к увеличению тока.

Повышенный ток, в свою очередь, приводит изоляцию обмоток в полную негодность, и наступает уже не межвитковое, а самое настоящее, полноценное короткое замыкание. Ток идет помимо обмоток, сразу из фазного в нулевой провод. Правда, все сказанное может случиться только с совсем простым и дешевым вентилятором, не оборудованным тепловой защитой.

Закон Ома для переменного тока

Надо отметить, что приведенная запись закона Ома описывает участок цепи с постоянным напряжением. В сетях переменного напряжения существует дополнительное реактивное сопротивление, а полное сопротивление приобретает значение квадратного корня из суммы квадратов активного и реактивного сопротивления.

Закон Ома для участка цепи переменного тока принимает вид: I=U/Z ,

где Z - полное сопротивление цепи.

Но большое реактивное сопротивление свойственно, прежде всего, мощным электрическим машинам и силовой преобразовательной технике. Внутреннее электрическое сопротивление бытовых приборов и светильников практически полностью является активным. Поэтому в быту для расчетов можно пользоваться самой простой формой записи закона Ома: I=U/R.

3. Интегральная форма записи для полной цепи

Раз есть форма записи закона для участка цепи, то существует и закон Ома для полной цепи: I=E/(r+R) .

Здесь r - внутреннее сопротивление источника ЭДС сети, а R - полное сопротивление самой цепи.

За физической моделью для иллюстрации этого подвида закона Ома далеко ходить не надо - это бортовая электрическая сеть автомобиля, аккумулятор в которой является источником ЭДС. Нельзя считать, что сопротивление аккумулятора равно абсолютному нулю, поэтому даже при прямом замыкании между его клеммами (отсутствии сопротивления R) ток вырастет не до бесконечности, а просто до высокого значения. Однако этого высокого значения, конечно, хватит для того, чтобы вызвать расплавление проводов и возгорание обшивки авто. Поэтому электрические цепи автомобилей защищают от короткого замыкания при помощи предохранителей.

Такой защиты может оказаться недостаточно, если замыкание произойдет до блока предохранителей относительно аккумулятора, или если вовсе один из предохранителей заменен на кусок медной проволоки. Тогда спасение только в одном - необходимо как можно быстрее разорвать цепь полностью, откинув «массу», то есть минусовую клемму.

4. Интегральная форма записи закона Ома для участка цепи, содержащего источник ЭДС

Следует упомянуть и о том, что есть и еще одна разновидность закона Ома - для участка цепи, содержащего источник ЭДС:

Здесь U - это разность потенциалов в начале и в окончании рассматриваемого участка цепи. Знак перед величиной ЭДС зависит от направленности ее относительно напряжения. Воспользоваться законом Ома для участка цепи нередко приходится при определении параметров цепи, когда часть схемы недоступна для детального изучения и не интересует нас. Допустим, она скрыта неразъемными деталями корпуса. В оставшейся схеме имеется источник ЭДС и элементы с известным сопротивлением. Тогда, замерив напряжение на входе неизвестной части схемы, можно вычислить ток, а после этого - и сопротивление неизвестного элемента.

Выводы

Таким образом, мы можем увидеть, что «простой» закон Ома далеко не так прост, как кому-то, возможно, казалось. Зная все формы интегральной записи законов Ома, можно понять и легко запомнить многие требования электробезопасности, а также приобрести уверенность в обращении с электричеством.

Лучшие статьи по теме